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ABSTRACT

Differential privacy is a framework to quantify to what extent individual privacy in a statis-

tical database is preserved while releasing useful aggregate information about the database.

This dissertation studies the fundamental trade-off between privacy and utility in differential

privacy in the most basic problem settings.

We first derive the optimal ε-differentially private mechanism for single real-valued query

function under a very general utility-maximization (or cost-minimization) framework. The

class of noise probability distributions in the optimal mechanism has staircase-shaped prob-

ability density functions which are symmetric (around the origin), monotonically decreasing

and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture

of uniform probability distributions, providing a simple algorithmic description for the mech-

anism. Furthermore, the staircase mechanism naturally generalizes to discrete query output

settings as well as more abstract settings. We explicitly derive the parameter of the optimal

staircase mechanism for `1 and `2 cost functions. Comparing the optimal performances with

those of the usual Laplacian mechanism, we show that in the high privacy regime (ε is small),

the Laplacian mechanism is asymptotically optimal as ε→ 0; in the low privacy regime (ε is

large), the minimum magnitude and second moment of noise are Θ(∆e−
ε
2 ) and Θ(∆2e−

2ε
3 ) as

ε→ +∞, respectively, while the corresponding figures when using the Laplacian mechanism

are ∆
ε

and 2∆2

ε2
, where ∆ is the sensitivity of the query function. We conclude that the gains

of the staircase mechanism are more pronounced in the low privacy regime.

We also show the optimality of the staircase mechanism for ε-differentially privacy in

the multiple dimensional setting where the query output has multiple components, e.g.,

histogram query function. We prove that when the dimension is two, for the `1 cost func-

tion, the noise probability distribution in the optimal mechanism has a multiple dimensional

staircase-shaped probability density function. We explicitly derive the parameter of the

optimal two-dimensional staircase mechanism, and study the asymptotical performance of

optimal mechanism in the high and low privacy regimes. Comparing the optimal perfor-

mances with those of the usual Laplacian mechanism, we show that in the high privacy

regime (ε is small), the Laplacian mechanism is asymptotically optimal as ε→ 0; in the low
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privacy regime (ε is large), the optimal cost is Θ(e−
ε
3 ), while the cost of the Laplacian mech-

anism is 2∆
ε

. We conclude that the gains of the staircase mechanism are more pronounced

in the low privacy regime.

Lastly, we study the optimal mechanisms in (ε, δ)-differential privacy for integer-valued

query functions under a utility-maximization/cost-minimization framework. We show that

the (ε, δ)-differential privacy is a framework not much more general than the (ε, 0)-differential

privacy and (0, δ)-differential privacy in the context of `1 and `2 cost functions, i.e., minimum

expected noise magnitude and noise power. In the same context of `1 and `2 cost functions,

we show the near-optimality of uniform noise mechanism and discrete Laplacian mechanism

in the high privacy regime (as (ε, δ)→ (0, 0)).
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Due to the advances of information technology and the prevalence of social networks, vast

amounts of personal information can be efficiently collected and processed. The availability

of such big data enables us to produce a number of useful applications by analyzing the col-

lected information. For example, Netflix, an online DVD-rental service, can use subscribers’

preferences for movies to build a movie recommendation system; a user on Amazon.com, the

world’s largest online retailer, can use other users’ reviews and ratings to decide which item

might be good and reliable.

While releasing the statistics of collected data has great potential use for analysis, with-

out proper statistical disclosure mechanisms, the privacy of individuals in the dataset can be

jeopardized. In 2006, Netflix hosted the Netflix prize contest, an open competition in which

contestants designed algorithms to make predictions on user ratings for movies from the re-

leased dataset by Netflix. The training dataset provided by Netflix consisted of 100,480,507

ratings that 480,189 users gave to 17,770 movies [1]. To protect the privacy of customers

in the released training dataset, Netflix anonymized the dataset by removing users’ person-

al information, e.g., name, from the dataset, and only used integer IDs. However, these

anonymization approaches were not sufficient to preserve customers’ privacy. By connecting

the released anonymized dataset by Netflix and the Internet Movie Database as background

knowledge, Narayanan and Shmatikov [2] successfully de-anonymized and identified some

Netflix records of known users.

As can be seen from the Netflix prize example, one difficulty for defining a notion of

privacy which is resilient to attacks is to model the side information of adversaries.

Differential privacy is a recent formal notion of privacy, and it separates the issues of

modeling adversary side information by requiring the indistinguishability of whether an

individual is in the dataset or not based on the released information. The key idea of

differential privacy is that the presence or absence of any individual data in the database

should not affect the final released statistical information significantly, and thus it can give
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strong privacy guarantees against an adversary with arbitrary auxiliary information. For

more motivation and background of differential privacy, we refer the readers to the survey

by Dwork [3].

The basic problem setting in differential privacy for a statistical database is as follows:

suppose a dataset curator is in charge of a statistical database which consists of records of

many individuals, and an analyst sends a query request to the curator to get some aggregate

information about the whole database. The curator can simply compute the query output

by applying the query function to the whole database and send the query output directly

to the analyst. However, this approach may not provide privacy guarantees on each individ-

ual record in the database. To satisfy the differential privacy constraint, a query-releasing

mechanism needs to send a randomized query output to the analyst in a way such that the

probability distribution of the query output does not differ too much, whether or not any

individual record is in the database.

The standard mechanism to achieve differential privacy is to perturb the query output

by adding random noise. If noise is sufficiently large and random, it will help preserve

the differential privacy while the utility which the analyst can get from the query output

will deteriorate. On the other hand, if the noise is very small, while the analyst can get

high utility, it may not satisfy the given privacy constraint. Clearly, there exists a trade-off

between privacy and utility.

In many existing works studying the trade-off between accuracy and privacy in differential

privacy, the usual metric of accuracy is the variance, or magnitude expectation of the noise

added to the query output. For example, Hardt and Talwar [4] study the trade-off between

privacy and error for answering a set of linear queries over a histogram in a differentially

private way, where the error is defined as the worst expectation of the `2-norm of the noise

among all possible query output. Hardt and Talwar [4] derive lower and upper bounds on

the error given the differential privacy constraint. Nikolov, Talwar, and Zhang [5] extend the

result on the trade-off between privacy and error to the case of (ε, δ)-differential privacy. Li

et al. [6] study how to optimize linear counting queries under differential privacy, where the

error is measured by the mean squared error of query output estimates, which corresponds

to the variance of the noise added to the query output to preserve differential privacy.

More generally, the error can be a general function depending on the additive noise

(distortion) to the query output. Ghosh, Roughgarden, and Sundararajan [7] study a very

general utility-maximization framework for a single count query with sensitivity one under

differential privacy, where the utility (cost) function can be a general function depending

on the noise added to the query output. They show that there exists a universally optimal

mechanism (adding geometric noise) to preserve differential privacy for a general class of
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utility functions under a Bayesian framework. Brenner and Nissim [8] show that for general

query functions, no universally optimal differential privacy mechanisms exist. Gupte and

Sundararajan [9] generalize the result of [7] to a minimax setting.

The main theme of this dissertation is to delve into fundamental limits of data privacy

and derive the optimal mechanisms to preserve differential privacy in the most basic problem

settings, as opposed to preserving privacy for each and every application setting, as is done

in most works in the literature.

1.2 Our Contribution

In this dissertation, we study the fundamental trade-off between privacy and utility of d-

ifferential privacy in the most basic problem settings. Our results can be summarized as

follows:

• ε-differential privacy in the single dimensional setting :

Given the differential privacy constraint, we derive the optimal differentially private

mechanism for a single real-valued query function under a general utility-maximization

(or cost-minimization) framework. The class of noise probability distributions in the

optimal mechanism has staircase-shaped probability density functions which are sym-

metric (around the origin), monotonically decreasing and geometrically decaying. The

staircase mechanism can be viewed as a geometric mixture of uniform probability dis-

tributions, providing a simple algorithmic description for the mechanism. Furthermore,

the staircase mechanism naturally generalizes to discrete query output settings as well

as more abstract settings. We show that adding query-output independent noise with

staircase distribution is optimal among all randomized mechanisms (subject to a mild

technical condition) that preserve differential privacy.

We explicitly derive the optimal noise probability distributions with minimum expec-

tation of noise amplitude and power. Comparing the optimal performances with those

of the Laplacian mechanism, we show that in the high privacy regime, the Laplacian

mechanism is asymptotically optimal; in the low privacy regime, the staircase mecha-

nism significantly outperforms the Laplacian mechanism. We conclude that the gains

are more pronounced in the low privacy regime.

• ε-differential privacy in the multiple dimensional setting :

We extend the staircase mechanism from the single dimensional setting to the multi-

ple dimensional setting. We show that for histogram-like query functions, when the

3



dimension of the query output is two, the multiple dimensional staircase mechanism is

optimal for the `1 cost function. We study the asymptotical performance of optimal

mechanisms in the high and low privacy regimes. Comparing the optimal performances

with those of the Laplacian mechanism, we conclude that in the multiple dimensional

setting, the Laplacian mechanism is asymptotically optimal in the high privacy regime,

and the staircase mechanism significantly outperforms the Laplacian mechanism in the

low privacy regime.

• (ε, δ)-differential privacy :

We study the optimal mechanisms in (ε, δ)-differential privacy for integer-valued query

functions under a utility-maximization/cost-minimization framework. We show that

the (ε, δ)-differential privacy is a framework not much more general than the (ε, 0)-

differential privacy and (0, δ)-differential privacy in the context of `1 and `2 cost func-

tions, i.e., minimum expected noise magnitude and noise power. In the same context of

`1 and `2 cost functions, we show the near-optimality of the uniform noise mechanism

and the discrete Laplacian mechanism in the high privacy regime (as (ε, δ)→ (0, 0)).

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 studies the optimal mechanism

in the standard ε-differential privacy setting for a single real-valued query function, and

presents our main result on the optimality of the staircase mechanism for a general class

of cost functions. Chapter 3 shows the optimality of the staircase mechanism in the multi-

dimensional setting in which the query output has multiple components for the `1 cost

function. Chapter 4 studies the (approximately) optimal mechanisms in (ε, δ)-differential

privacy. We concludes this dissertation in Chapter 5.
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CHAPTER 2

THE OPTIMAL MECHANISM IN ε-DIFFERENTIAL
PRIVACY: SINGLE DIMENSIONAL SETTING

In this chapter, we study the optimal mechanism in ε-differential privacy under a utility-

maximization framework. We first give the background on differential privacy in Section 2.1,

then give the precise problem formulation in Section 2.2. Section 2.3 gives an overview of our

main results on the optimality mechanism in ε-differential privacy. We show the optimality of

query-output independent perturbation in Section 2.4, and present the optimal differentially

private mechanism, staircase mechanism, in Section 2.5. In Section 2.6, we apply our main

result to derive the optimal noise probability distribution with minimum expectation of

noise amplitude and power, respectively, and compare the performances with the Laplacian

mechanism. Section 2.7 presents the asymptotic properties of γ∗ in the staircase mechanism

for momentum cost functions, and suggests a heuristic choice of γ that appears to work

well for a wide class of cost functions. Section 2.8 generalizes the staircase mechanism for

integer-valued query functions in the discrete setting, and Section 2.9 extends the staircase

mechanism to the abstract setting. Section 2.10 discusses the connection between our work

and the literature.

2.1 Background on Differential Privacy

The basic problem setting in differential privacy for a statistical database is as follows:

suppose a dataset curator is in charge of a statistical database which consists of records of

many individuals, and an analyst sends a query request to the curator to get some aggregate

information about the whole database. Without any privacy concerns, the database curator

can simply apply the query function to the dataset, compute the query output, and send

the result to the analyst. However, to protect the privacy of individual data in the dataset,

the dataset curator should use a randomized query-answering mechanism such that the

probability distribution of the query output does not differ too much, whether or not any

individual record is in the database.

5
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Formally, consider a real-valued query function

q : Dn → R,

where Dn is the set of all possible datasets. The real-valued query function q will be applied

to a dataset, and the query output is a real number. Two datasets D1, D2 ∈ Dn are called

neighboring datasets if they differ in at most one element, i.e., one is a proper subset of the

other and the larger dataset contains just one additional element [3]. A randomized query-

answering mechanism K for the query function q will randomly output a number whose

probability distribution depends on query output q(D), where D is the dataset.

Definition 2.1 (ε-Differential Privacy [3]). A randomized mechanism K gives ε-differential

privacy if for all data sets D1 and D2 differing in at most one element, and all S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) Pr[K(D2) ∈ S], (2.1)

where K(D) is the random output of the mechanism K when the query function q is applied

to the dataset D.

The differential privacy constraint (2.1) essentially requires that for all neighboring

datasets, the probability distributions of the output of the randomized mechanism should be

approximately the same. Therefore, for any individual record, its presence or absence in the

dataset will not significantly affect the output of the mechanism, which makes it hard for

adversaries with arbitrary background knowledge to make inferences about any individual

from the released query output information. The parameter ε ∈ (0,+∞) quantifies how

private the mechanism is: the smaller ε is , the more private the randomized mechanism is.

2.1.1 Operational Meaning of ε-Differential Privacy in the Context of
Hypothesis Testing

As shown by [10], one can interpret the differential privacy constraint (2.1) in the context

of hypothesis testing in terms of false alarm probability and missing detection probability.

Indeed, consider a binary hypothesis-testing problem over two neighboring datasets, H0 : D1

versus H1 : D2, where an individual’s record is in D2 only. Given a decision rule, let S be

the decision region such that when the released output lies in S, H1 will be rejected, and

when the released output lies in SC (the complement of S), H0 will be rejected. The false
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alarm probability PFA and the missing detection probability PMD can be written as

PFA = P (K(D1) ∈ SC),

PMD = P (K(D2) ∈ S).

Therefore, from (2.1) we get

1− PFA ≤ eεPMD.

Thus

eεPMD + PFA ≥ 1.

Switch D1 and D2 in (2.1), and we get

Pr[K(D2) ∈ S] ≤ exp(ε) Pr[K(D1) ∈ S].

Therefore,

1− PMD ≤ eεPFA,

and thus

PMD + eεPFA ≥ 1.

In conclusion, we have

eεPMD + PFA ≥ 1,

PMD + eεPFA ≥ 1.

The ε-differential privacy constraint implies that in the context of hypothesis testing, PFA

and PMD cannot both be too small. We plot the regions of PFA and PMD under ε-differential

privacy in Figure 2.1.

2.1.2 Laplacian Mechanism

The standard approach to preserving ε-differential privacy is to perturb the query output

by adding random noise with Laplacian distribution proportional to the sensitivity ∆ of the
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Figure 2.1: The Region of PFA and PMD under ε-Differential Privacy

query function q, where the sensitivity of a real-valued query function is defined as

Definition 2.2 (Query Sensitivity [3]). For a real-valued query function q : Dn → R, the

sensitivity of q is defined as

∆ := max
D1,D2∈Dn

|q(D1)− q(D2)|, (2.2)

for all D1, D2 differing in at most one element.

Formally, the Laplacian mechanism is:

Definition 2.3 (Laplacian Mechanism [11]). For a real-valued query function q : Dn → R
with sensitivity ∆, the Laplacian mechanism will output

K(D) := q(D) + Lap(
∆

ε
),

where Lap(λ) is a random variable with probability density function

f(x) =
1

2λ
e−
|x|
λ , ∀x ∈ R.

Consider two neighboring datasets D1 and D2 where |q(D1) − q(D2)| = ∆. It is easy

to compute the trade-off between the false alarm probability PFA and the missing detection

8



Figure 2.2: The Region of PFA and PMD under the Laplacian Mechanism

probability PMD under the Laplacian mechanism, which is

PMD =


1− eεPFA PFA ∈ [0, 1

2
e−ε)

e−ε

4PFA
PFA ∈ [1

2
e−ε, 1

2
)

e−ε(1− PFA) PFA ∈ [1
2
, 1]

(2.3)

The region of PFA and FMD under the Laplacian mechanism for two neighboring datasets

D1 and D2 such that |q(D1)− q(D2)| = ∆ is ploted in Figure 2.2.

Since its introduction in [11], the Laplacian mechanism has become the standard tool

in differential privacy and has been used as the basic building block in a number of works

on differential privacy analysis in other more complex problem settings, e.g., [6, 12–46].

Given this near-routine use of the query-output independent adding of Laplacian noise, the

following two questions are natural:

• Is query-output independent perturbation optimal?

• Assuming query-output independent perturbation, is Lapacian noise distribution op-

timal?

In this dissertation we answer the above two questions. Our main result is that given

an ε-differential privacy constraint, under a general utility-maximization (equivalently, cost-

minimization) model, for a single real-valued query function (assuming local sensitivity is

the same as global sensitivity),

9



• adding query-output independent noise is indeed optimal (under a mild technical con-

dition), and

• the optimal noise distribution is not Laplacian distribution; instead, the optimal one

has a staircase-shaped probability density function.

We also generalize the same result to the discrete setting where the query output is

integer-valued and to more abstract settings.

2.2 Problem Formulation

We formulate a utility-maximization (cost-minimization) problem under the differential pri-

vacy constraint.

2.2.1 Differential Privacy Constraint

A general randomized releasing mechanism K is a family of noise probability distributions

indexed by the query output (denoted by t), i.e.,

K = {Pt : t ∈ R},

and given dataset D, the mechanism K will release the query output t = q(D) corrupted by

additive random noise with probability distribution Pt:

K(D) = t+Xt,

where Xt is a random variable with probability distribution Pt.
The differential privacy constraint (2.1) on K is that for any t1, t2 ∈ R such that |t1−t2| ≤

∆ (corresponding to the query outputs for two neighboring datasets),

Pt1(S) ≤ eεPt2(S + t1 − t2),∀ measurable set S ⊂ R, (2.4)

where for any t ∈ R, S + t := {s+ t | s ∈ S}.

10



2.2.2 Utility Model

The utility model we use in this dissertation is a very general one, which is also used in

the works by Ghosh, Roughgarden, and Sundararajan [7], Gupte and Sundararajan [9], and

Brenner and Nissim [8].

Consider a cost function L(·) : R → R, which is a function of the additive noise. Given

additive noise x, the cost is L(x). Given query output t ∈ R, the additive noise is a random

variable with probability distribution Pt, and thus the expectation of the cost is∫
x∈R
L(x)Pt(dx).

The objective is to minimize the worst-case cost among all possible query outputs {t ∈ R},
i.e.,

minimize sup
t∈R

∫
x∈R
L(x)Pt(dx). (2.5)

2.2.3 Optimization Problem

Combining the differential privacy constraint (2.4) and the objective function (2.5), we for-

mulate a functional optimization problem:

minimize
{Pt}t∈R

sup
t∈R

∫
x∈R
L(x)Pt(dx) (2.6)

subject to Pt1(S) ≤ eεPt2(S + t1 − t2),∀ measurable set S ⊆ R, ∀|t1 − t2| ≤ ∆. (2.7)

2.3 An Overview of Our Results

2.3.1 Adding Query-Output Independent Noise Is Optimal

Our first result is that under a mild technical condition, adding query-output independen-

t noise is optimal, i.e., we can assume that Pt ≡ P for all t ∈ R for some probability

distribution P .

For any positive integer n, and for any positive real number T , define

KT,n ,{ {Pt}t∈R | {Pt}t∈R satisfies (2.7), Pt = Pk T
n
, for t ∈ [k

T

n
, (k + 1)

T

n
), k ∈ Z,

and Pt+T = Pt,∀t ∈ R }.
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Theorem 2.1. Given any family of probability distribution {Pt}t∈R ∈ ∪T>0 ∪n≥1KT,n, there

exists a probability distribution P∗ such that the family of probability distributions {P∗t }t∈R
with P∗t ≡ P∗ satisfies the differential privacy constraint (2.7) and

sup
t∈R

∫
x∈R
L(x)P∗t (dx) ≤ sup

t∈R

∫
x∈R
L(x)Pt(dx).

Theorem 2.1 states that if we assume the family of noise probability distributions is

piecewise constant (the length of pieces can be arbitrarily small) over t, and periodic (the

period can be arbitrary) over t, then in the optimal mechanism we can assume Pt does not

depend on t. We conjecture that the technical condition can be done away with.

2.3.2 Optimal Noise Probability Distribution

Due to Theorem 2.1, adding query-output independent noise is optimal, and thus we only

need to study what the optimal noise probability distribution is. Let P denote the probability

distribution of the noise added to the query output. Then the optimization problem (2.6)

and (2.7) is reduced to

minimize
P

∫
x∈R
L(x)P(dx)

subject to P(S) ≤ eεP(S + d),∀ measurable set S ⊆ R, ∀|d| ≤ ∆.

Consider a staircase-shaped probability distribution with probability density function

(p.d.f.) fγ(·) defined as

fγ(x) =



a(γ) x ∈ [0, γ∆)

e−εa(γ) x ∈ [γ∆,∆)

e−kεfγ(x− k∆) x ∈ [k∆, (k + 1)∆) for k ∈ N

fγ(−x) x < 0,

where

a(γ) ,
1− e−ε

2∆(γ + e−ε(1− γ))

is a normalizing constant to make
∫
x∈R fγ(x)dx = 1.

Our main result is

12



Theorem 2.2. If the cost function L(·) is symmetric and increasing, and supx≥T
L(x+1)
L(x)

<

+∞ for some T > 0, the optimal noise probability distribution has a staircase-shaped proba-

bility density function fγ∗(·), where

γ∗ = arg min
γ∈[0,1]

∫
x∈R
L(x)fγ(x)dx.

We plot the probability density functions of the Laplacian mechanism and the staircase

mechanism in Figure 2.3. Figure 2.4 in Section 2.5 gives a precise description of the staircase

mechanism.

The staircase mechanism is specified by three parameters: ε, ∆, and γ∗, which is de-

termined by ε and the cost function L(·). For certain classes of cost functions, there are

closed-form expressions for the optimal γ∗.

(a) Laplacian Mechanism (b) Staircase Mechanism

Figure 2.3: Probability Density Functions of the Laplacian Mechanism and the Staircase
Mechanism

2.3.3 Applications: Minimum Noise Magnitude and Noise Power

We apply our main result Theorem 2.4 to two typical cost functions L(x) = |x| and L(x) =

x2, which measure noise magnitude and noise power, respectively. We derive the closed-

form expressions for the optimal parameters γ∗ for these two cost functions. Comparing

the optimal performances with those of the Laplacian mechanism, we show that in the high

privacy regime (ε is small), the Laplacian mechanism is asymptotically optimal as ε → 0;

in the low privacy regime (ε is large), the minimum expectation of noise amplitude and

the minimum noise power are Θ(∆e−
ε
2 ) and Θ(∆2e−

2ε
3 ) as ε→ +∞, respectively, while the

expectation of noise amplitude and the noise power using the Laplacian mechanism are ∆
ε

and 2∆2

ε2
, respectively, where ∆ is the sensitivity of the query function. We conclude that the

gains are more pronounced in the low privacy regime.
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2.3.4 Extension to the Discrete Setting

Since for many important practical applications, query functions are integer-valued, we also

derive the optimal differentially private mechanisms for answering a single integer-valued

query function. We show that adding query-output independent noise is optimal under

a mild technical condition, and the optimal noise probability distribution has a staircase-

shaped probability mass function, which can be viewed as the discrete variant of the staircase

mechanism in the continuous setting.

This result helps us directly compare our work and the existing works [7, 9] on integer-

valued query functions. Our result shows that for integer-valued query functions, the optimal

noise probability mass function is also staircase-shaped, and in the case the sensitivity ∆ = 1,

the optimal probability mass function is reduced to the geometric distribution, which was

derived in [7, 9]. Therefore, this result can be viewed as a generalization of [7, 9] in the

discrete setting for query functions with arbitrary sensitivity.

2.4 Optimality of Query-Qutput Independent Perturbation

Recall that the optimization problem we study in this work is

minimize
{Pt}t∈R

sup
t∈R

∫
x∈R
L(x)Pt(dx) (2.8)

subject to Pt1(S) ≤ eεPt2(S + t1 − t2),∀ measurable set S ⊆ R, ∀|t1 − t2| ≤ ∆, (2.9)

where Pt is the noise probability distribution when the query output is t.

Our claim is that in the optimal family of probability distributions, Pt can be independent

of t, i.e., the probability distribution of noise is independent of the query output. We prove

this claim under a technical condition which assumes that {Pt}t∈R is piecewise constant and

periodic (the period can be arbitrary) in terms of t.

For any positive integer n, and for any positive real number T , define

KT,n ,{ {Pt}t∈R | {Pt}t∈R satisfies (2.7), Pt = Pk T
n
, for t ∈ [k

T

n
, (k + 1)

T

n
), k ∈ Z,

and Pt+T = Pt,∀t ∈ R }.

Theorem 2.3. Given any family of probability distribution {Pt}t∈R ∈ ∪T>0 ∪n≥1KT,n, there

exists a probability distribution P∗ such that the family of probability distributions {P∗t }t∈R
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with P∗t ≡ P∗ satisfies the differential privacy constraint (2.7) and

sup
t∈R

∫
x∈R
L(x)P∗t (dx) ≤ sup

t∈R

∫
x∈R
L(x)Pt(dx).

Proof. Here we briefly discuss the main proof technique. For the complete proof, see Ap-

pendix A.1. The proof of Theorem 2.3 uses two properties on the family of probability

distributions satisfying differential privacy constraint (2.7). First, we show that for any

family of probability distributions satisfying (2.7), any translation of the probability distri-

butions will also preserve differential privacy, and the cost is the same. Second, we show that

given a collection of families of probability distributions each of which satisfies (2.7), we can

take a convex combination of them to construct a new family of probability distributions

satisfying (2.7), and the new cost is not worse. Due to these two properties, given any family

of probability distributions {Pt}t∈R ∈ ∪T>0 ∪n≥1 KT,n, one can take a convex combination

of different translations of {Pt}t∈R to construct {P∗t }t∈R with P∗t ≡ P∗, and the cost is not

worse.

Theorem 2.3 states that if we assume the family of noise probability distributions is

piecewise constant (over intervals with length T
n

) in terms of t, and periodic over t (with

period T ), where T, n can be arbitrary, then in the optimal mechanism we can assume Pt
does not depend on t. We conjecture that the technical condition can be done away with.

2.5 Optimal Noise Probability Distribution

Due to Theorem 2.3, to derive the optimal randomized mechanism to preserve differential

privacy, we can restrict our attention to noise-adding mechanisms where the noise probability

distribution does not depend on the query output. In this section we state our main result

Theorem 2.4 on the optimal noise probability distribution.

Let P denote the probability distribution of the noise added to the query output. Then

the optimization problem in (2.6) and (2.7) is reduced to

minimize
P

∫
x∈R
L(x)P(dx) (2.10)

subject to P(S) ≤ eεP(S + d),∀ measurable set S ⊆ R, ∀|d| ≤ ∆. (2.11)

We assume that the cost function L(·) satisfies two (natural) properties.
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Figure 2.4: The Staircase-Shaped Probability Density Function fγ(x)

Property 2.1. L(x) is a symmetric function, and monotonically increasing for x ≥ 0, i.e,

L(x) satisfies

L(x) = L(−x),∀x ∈ R,

and

L(x) ≤ L(y),∀0 ≤ x ≤ y.

In addition, we assume L(x) satisfies a mild technical condition which essentially says

that L(·) does not increase too fast (while still allowing it to be unbounded).

Property 2.2. There exists a positive integer T such that L(T ) > 0 and L(x) satisfies

sup
x≥T

L(x+ 1)

L(x)
< +∞. (2.12)

Consider a staircase-shaped probability distribution with probability density function

(p.d.f.) fγ(·) defined as

fγ(x) =



a(γ) x ∈ [0, γ∆)

e−εa(γ) x ∈ [γ∆,∆)

e−kεfγ(x− k∆) x ∈ [k∆, (k + 1)∆) for k ∈ N

fγ(−x) x < 0,

(2.13)
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where

a(γ) ,
1− e−ε

2∆(γ + e−ε(1− γ))

is a normalizing constant to make
∫
x∈R fγ(x)dx = 1. It is easy to check that for any γ ∈ [0, 1],

the probability distribution with p.d.f. fγ(·) satisfies the differential privacy constraint (2.11).

Indeed, the probability density function fγ(x) satisfies

fγ(x) ≤ eεfγ(x+ d),∀x ∈ R, |d| ≤ ∆,

which implies (2.11).

Let SP denote the set of all probability distributions satisfying (2.11). Our main result

on the optimal noise probability distribution is:

Theorem 2.4. If the cost function L(x) satisfies Property 2.1 and Property 2.2, then

inf
P∈SP

∫
x∈R
L(x)P(dx) = inf

γ∈[0,1]

∫
x∈R
L(x)fγ(x)dx.

Proof. Here we briefly discuss the main proof idea and technique. First, by deriving several

properties on the probability distributions satisfying the ε-differential privacy constraint, we

show that without loss of generality, one can “discretize” any valid probability distribution,

even for those which do not have probability density functions. Second, we show that to

minimize the cost, the probability density function of the discretized probability distribution

should be monotonically and geometrically decaying. Lastly, we show that the optimal prob-

ability density function should be staircase-shaped. For the complete proof, see Appendix

A.2.

Therefore, the optimal noise probability distribution to preserve ε-differential privacy for

any real-valued query function has a staircase-shaped probability density function, which is

specified by three parameters ε, ∆, and γ∗ = arg min
γ∈[0,1]

∫
x∈R L(x)fγ(x)dx.

A natural and simple algorithm to generate random noise with staircase distribution is

given in Algorithm 1.

In the formula,

X ← S ((1−B) ((G+ γU)∆) +B ((G+ γ + (1− γ)U)∆)) ,

where

• S determines the sign of the noise,
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Algorithm 1 Generation of a Random Variable with Staircase Distribution

Input: ε, ∆, and γ ∈ [0, 1].
Output: X, a random variable (r.v.) with staircase distribution specified by ε,∆, and
γ.

Generate a r.v. S with Pr[S = 1] = Pr[S = −1] = 1
2
.

Generate a geometric r.v. G with Pr[G = i] = (1− b)bi for integer i ≥ 0, where b = e−ε.
Generate a r.v. U uniformly distributed in [0, 1].

Generate a binary r.v. B with Pr[B = 0] = γ
γ+(1−γ)b

and Pr[B = 1] = (1−γ)b
γ+(1−γ)b

.

X ← S ((1−B) ((G+ γU)∆) +B ((G+ γ + (1− γ)U)∆)).
Output X.

• G determines which interval [G∆, (G+ 1)∆) the noise lies in,

• B determines which subinterval of [G∆, (G+γ)∆) and [(G+γ)∆, (G+ 1)∆) the noise

lies in,

• U helps to uniformly sample the subinterval.

2.6 Applications

In this section, we apply our main result Theorem 2.4 to derive the parameter γ∗ of the stair-

case mechanism with minimum expectation of noise magnitude and noise second moment,

and then compare the performances with the Laplacian mechanism.

2.6.1 Optimal Noise Probability Distribution with Minimum Expectation
of Noise Amplitude

To minimize the expectation of amplitude, we have cost function L(x) = |x|, and it is easy

to see that it satisfies Property 2.1 and Property 2.2.

To simplify notation, define b , e−ε, and define

V (P) ,
∫
x∈R
L(x)P(dx)

for a given probability distribution P .
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Theorem 2.5. To minimize the expectation of the amplitude of noise, the optimal noise

probability distribution has probability density function fγ∗(·) with

γ∗ =
1

1 + e
ε
2

,

and the minimum expectation of noise amplitude is

V (Pγ∗) = ∆
e
ε
2

eε − 1
.

Proof. See Appendix A.3.

Next, we compare the performances of the optimal noise probability distribution and the

Laplacian mechanism. The Laplace distribution has probability density function

f(x) =
1

2λ
e−
|x|
λ ,

where λ = ∆
ε
. So the expectation of the amplitude of noise with the Laplace distribution is

VLap ,
∫ +∞

−∞
|x|f(x)dx =

∆

ε
.

By comparing V (Pγ∗) and VLap, it is easy to see that in the high privacy regime (ε

is small) the Laplacian mechanism is asymptotically optimal, and the additive gap from

optimal value goes to 0 as ε → 0; in the low privacy regime (ε is large), VLap = ∆
ε
, while

V (Pγ∗) = Θ(∆e−
ε
2 ). Indeed,

Corollary 2.6. Consider the cost function L(x) = |x|. In the high privacy regime (ε is

small),

VLap − V (Pγ∗) = ∆

(
ε

24
− 7ε3

5760
+O(ε5)

)
,

as ε→ 0.

And in the low privacy regime (ε is large),

VLap =
∆

ε
,

V (Pγ∗) = Θ(∆e−
ε
2 ),

as ε→ +∞.
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Figure 2.5: Optimal γ∗ for the Cost Function L(x) = x2

2.6.2 Optimal Noise Probability Distribution with Minimum Power

Given the probability distribution P of the noise, the power of noise is defined as
∫
x∈R x

2P(dx).

Accordingly, the cost function L(x) = x2, and it is easy to see it satisfies Property 2.1 and

Property 2.2.

Recall b , e−ε.

Theorem 2.7. To minimize the power of noise (accordingly, L(x) = x2), the optimal noise

probability distribution has probability density function fγ∗(·) with

γ∗ = − b

1− b
+

(b− 2b2 + 2b4 − b5)1/3

21/3(1− b)2
,

and the minimum power of noise is

V (Pγ∗) = ∆2 2−2/3b2/3(1 + b)2/3 + b

(1− b)2
.

Proof. See Appendix A.4.

We plot γ∗ as a function of b for the cost function L(x) = x2 in Figure 2.5.

Next, we compare the performances of the optimal noise probability distribution and the
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Laplacian mechanism. The power of noise with Laplace distribution with λ = ∆
ε

is

VLap ,
∫ +∞

−∞
x2 1

2λ
e−
|x|
λ dx = 2

∆2

ε2
.

By comparing V (Pγ∗) and VLap, it is easy to see that in the high privacy regime (ε

is small) the Laplacian mechanism is asymptotically optimal, and the additive gap from

optimal value is upper bounded by a constant as ε → 0; in the low privacy regime (ε is

large), VLap = Θ(2∆2

ε2
), while V (Pγ∗) = Θ(∆2e−

2ε
3 ). Indeed,

Corollary 2.8. Consider the cost function L(x) = x2. In the high privacy regime (ε is

small),

VLap − V (Pγ∗) = ∆2

(
1

12
− ε2

720
+O(ε4)

)
,

as ε→ 0.

And in the low privacy regime (ε is large),

VLap =
2∆2

ε2
,

V (Pγ∗) = Θ(∆2e−
2ε
3 ),

as ε→ +∞.

2.7 Property of γ∗

In this section, we derive some asymptotic properties of the optimal γ∗ for moment cost

functions, and give a heuristic choice of γ which only depends on ε.

2.7.1 Asymptotic Properties of γ∗

In Section 2.6, we have seen that for the cost functions L(x) = |x| and L(x) = x2, the

optimal γ∗ lies in the interval [0, 1
2
] for all ε and is a monotonically decreasing function of ε;

and furthermore, γ∗ → 1
2

as ε goes to 0, and γ∗ → 0 as ε goes to +∞.

We generalize these asymptotic properties of γ as a function of ε to all moment cost

functions. More precisely, given m ∈ N and m ≥ 1,
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Theorem 2.9. Consider the cost function L(x) = |x|m. Let γ∗ be the optimal γ in the

staircase mechanism for L(x), i.e.,

γ∗ = arg min
γ∈[0,1]

∫
x∈R
|x|mfγ(x)dx.

We have

γ∗ → 1

2
, as ε→ 0,

γ∗ → 0, as ε→ +∞.

Proof. See Appendix A.5.

Corollary 2.10. For all the cost functions L(·) which can be written as

L(x) =
n∑
i=1

αi|x|di ,

where n ≥ 1, αi ∈ R, di ∈ N and αi, di ≥ 0 for all i, the optimal γ∗ in the staircase mechanism

has the following asymptotic properties:

γ∗ → 1

2
, as ε→ 0,

γ∗ → 0, as ε→ +∞.

2.7.2 A Heuristic Choice of γ

We have shown that in general the optimal γ∗ in the staircase mechanism depends on both

ε and the cost function L(·). Here we give a heuristic choice of γ which depends only on ε,

and show that the performance is reasonably good in the low privacy regime.

Consider a particular choice of γ, which is

γ̃ :=
b

2
=
e−ε

2
.

It is easy to see that γ̃ has the same asymptotic properties as the optimal γ∗ for momen-

tum cost functions, i.e.,

γ̃ → 0, as b→ 0,

γ̃ → 1

2
, as b→ 1.
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Furthermore, the probability that the noise magnitude is less than e−ε

2
∆ is approximately

1
3

in the low privacy regime (ε→ +∞). Indeed,

Pr[|X| ≤ e−ε

2
∆] = Pr[|X| ≤ γ̃∆] = 2a(γ̃)γ̃∆ =

1− b
γ̃ + b(1− γ̃)

γ̃ =
b− b2

3b− b2
,

which goes to 1
3

as ε→ +∞ (accordingly, b→ 0).

On the other hand, for the Laplacian mechanism,

Pr[|X| ≤ e−ε

2
∆] =

∫ e−ε
2

∆

− e−ε
2

∆

1

2λ
e−
|x|
λ dx = 1− e−

εe−ε
2 ,

which goes to zero as ε→ +∞.

We conclude that in the low privacy regime as ε → +∞, the staircase mechanism with

the heuristic parameter γ̃ = e−ε

2
can guarantee with probability about 1

3
the additive noise is

very close to zero, while the probability given by the Laplacian mechanism is approximately

zero.

2.8 Extension to the Discrete Setting

In this section, we extend our main result Theorem 2.3 and Theorem 2.4 to the discrete

settings, and show that the optimal noise-adding mechanism in the discrete setting is a

discrete variant of the staircase mechanism in the continuous setting.

2.8.1 Problem Formulation

We first give the problem formulation in the discrete setting.

Consider an integer-valued query function1

q : Dn → Z,

where Dn is the domain of the databases. Let ∆ denote the sensitivity of the query function

q as defined in (2.2). Clearly, ∆ is an integer in this discrete setting.

In the discrete setting, a generic randomized mechanism K is a family of noise probability

1Without loss of generality, we assume that in the discrete setting the query output is integer-valued.
Indeed, any uniformly spaced discrete setting can be reduced to the integer-valued setting by scaling the
query output.
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distributions over the domain Z indexed by the query output (denoted by i), i.e.,

K = {Pi : i ∈ Z},

and given dataset D, the mechanism K will release the query output i = q(D) corrupted by

additive random noise with probability distribution Pi:

K(D) = i+Xi,

where Xi is a discrete random variable with probability distribution Pi.
Then, the ε-differential privacy constraint (2.1) on K is that for any i1, i2 ∈ Z such that

|i1− i2| ≤ ∆ (corresponding to the query outputs for two neighboring datasets), and for any

subset S ⊂ Z,

Pi1(j) ≤ eεPi2(j + i1 − i2), ∀j ∈ Z, |i1 − i2| ≤ ∆, (2.14)

and the goal is to minimize the worst-case cost

sup
i∈Z

+∞∑
j=−∞

L(j)Pi(j)

subject to the differential privacy constraint (2.14).

2.8.2 Optimality of Query-Qutput Independent Perturbation

In this section, we show that query-output independent perturbation is optimal in the dis-

crete setting.

For any integer n ≥ 1, define

Kn , { {Pi}i∈Z| {Pi}i∈Z satisfies (2.14), and Pi+n = Pi,∀i ∈ Z}.

Theorem 2.11. Given any family of probability distribution {Pi}i∈Z ∈ ∪n≥1Kn, there exists

a probability distribution P∗ such that the family of probability distributions {P∗i }i∈Z with

P∗i ≡ P∗ satisfies the differential privacy constraint (2.14) and

sup
i∈Z

+∞∑
j=−∞

L(j)P∗i (j) ≤ sup
i∈Z

+∞∑
j=−∞

L(j)Pi(j).
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Proof. The proof is essentially the same as the proof of Theorem 2.3, and thus is omitted.

Theorem 2.11 states that if we assume the family of noise probability distributions is

periodic in terms of i (the period can be arbitrary), then in the optimal mechanism we can

assume Pi does not depend on i. We conjecture that the technical condition can be done

away with.

2.8.3 Optimal Noise Probability Distribution

Due to Theorem 2.11, we only need to consider query-output independent perturbation

mechanisms.

Let q(D) be the value of the query function evaluated at dataset D. The noise-adding

mechanism K will output

K(D) = q(D) +X,

where X is the integer-valued noise added by the mechanism to the output of query function.

Let P be the probability distribution of the noise X. Then the optimization problem we

study is

minimize
P

+∞∑
i=−∞

L(i)P(i) (2.15)

subject to P(i) ≤ eεP(i+ d),∀i ∈ Z, d ∈ Z, |d| ≤ |∆|. (2.16)

It turns out that when the cost function L(·) is symmetric and monotonically increasing

for i ≥ 0, the solution to the above optimization problem is a discrete variant of the staircase

mechanism in the continuous setting.

As in the continuous setting, we also assume that the cost function L(·) is symmetric

and monotonically increasing for x ≥ 0, i.e.,

Property 2.3.

L(i) = L(−i), ∀i ∈ Z

L(i) ≤ L(i),∀i, j ∈ Z, 0 ≤ i ≤ j.

The easiest case is ∆ = 1. In the case that ∆ = 1, the solution is the geometric

mechanism, which was proposed in [7].

Recall b , e−ε.
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Figure 2.6: The Staircase-Shaped Probability Mass Function Pr(i)

Theorem 2.12. If the cost function L(·) satisfies Property 2.3 and ∆ = 1, then the geometric

mechanism, which has a probability mass function P with P(i) = 1−b
1+b

b|i|,∀i ∈ Z, is the

optimal solution to (2.15).

Proof. See Appendix A.6.

For fixed general ∆ ≥ 2, consider a class of symmetric and staircase-shaped probability

mass functions defined as follows. Given an integer 1 ≤ r ≤ ∆, denote Pr as the probability

mass function defined by

Pr(i) =



a(r) 0 ≤ i < r

e−εa(r) r ≤ i < ∆

e−kεPr(i− k∆) k∆ ≤ i < (k + 1)∆ for k ∈ N

Pr(−i) i < 0

(2.17)

for i ∈ Z, where

a(r) ,
1− b

2r + 2b(∆− r)− (1− b)
.

It is easy to verify that for any 1 ≤ r ≤ ∆, Pr is a valid probability mass function and it

satisfies the ε-differential privacy constraint (2.16). We plot the staircase-shaped probability

mass function Pr(i) in Figure 2.6.

Let SP be the set of all probability mass functions which satisfy the ε-differential privacy

constraint (2.16).
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Theorem 2.13. For ∆ ≥ 2, if the cost function L(x) satisfies Property 2.3, then

inf
P∈SP

+∞∑
i=−∞

L(i)P(i) = min
{r∈N|1≤r≤∆}

+∞∑
i=−∞

L(i)Pr(i).

Proof. See Appendix A.6.

Therefore, the optimal noise probability distribution to preserve ε-differential privacy

for integer-valued query function has a staircase-shaped probability mass function, which is

specified by three parameters ε, ∆, and r∗ = arg min
{r∈N|1≤r≤∆}

∑+∞
i=−∞ L(i)Pr(i). In the case ∆ = 1,

the staircase-shaped probability mass function is reduced to the geometric mechanism.

2.9 Extension to the Abstract Setting

In this section, we show how to extend the staircase mechanism to the abstract setting. The

approach is essentially the same as the exponential mechanism in [47], except that we replace

the exponential function by the staircase function.

Consider a privacy mechanism which maps an input from a domain Dn to some output

in a range R. Let µ be the base measure of R. In addition, we have a cost function

C : Dn ×R → [0,+∞).

Define ∆ as

∆ , max
r∈R, D1,D2⊆Dn:|D1−D2|≤1

|C(D1, r)− C(D2, r)|,

i.e., the maximum difference of cost function for any two inputs which differ only on one

single value over all r ∈ R [47].

A randomized mechanism K achieves ε-differential privacy if for any D1, D2 ⊆ Dn such

that |D1 −D2| ≤ 1, and for any measurable subset S ⊂ R,

Pr[K(D1) ∈ S] ≤ exp(ε) Pr[K(D2) ∈ S].

Definition 2.4 (Staircase Mechanism in the Abstract Setting). For fixed γ ∈ [0, 1], given

input D ∈ Dn, the staircase mechanism in the abstract setting will output an element in R
with the probability distribution defined as

PD(S) =

∫
r∈S fγ(C(D, r))µ(dr)∫
r∈R fγ(C(D, r))µ(dr)

,∀ measurable set S ⊂ R,
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where fγ is the staircase-shaped function defined in (2.13).

Theorem 2.14. The staircase mechanism in the abstract setting in Definition 2.4 achieves

2ε-differential privacy.

Proof. For any D1, D2 ∈ Dn such that |D1 −D2| ≤ 1, and for any measurable set S ⊂ R,

PD1(S) =

∫
r∈S fγ(C(D1, r))µ(dr)∫
r∈R fγ(C(D1, r))µ(dr)

≤ eε
∫
r∈S fγ(C(D2, r))µ(dr)∫
r∈R fγ(C(D1, r))µ(dr)

≤ eεeε
∫
r∈S fγ(C(D2, r))µ(dr)∫
r∈R fγ(C(D2, r))µ(dr)

= e2εPD2(S),

where we have used the property that fγ(C(D1, r)) ≤ eεfγ(C(D2, r)) and fγ(C(D2, r)) ≤
eεfγ(C(D1, r)) for all r ∈ R.

Therefore, the staircase mechanism in the abstract setting achieves 2ε-differential privacy

for any γ ∈ [0, 1].

In the case that the output range R is the set of real numbers R and the cost function

C(d, r) = |r − q(d)| for some real-valued query function q, the above mechanism is reduced

to the staircase mechanism in the continuous setting.

2.10 Connection to the Literature

In this section, we discuss the relations of our results and some directly related works in the

literature, and the implications of our results on other works.

2.10.1 Laplacian Mechanism vs. Staircase Mechanism

The Laplacian mechanism is specified by two parameters, ε and the query function sensitivity

∆. ε and ∆ completely characterize the differential privacy constraint. On the other hand,

the staircase mechanism is specified by three parameters, ε, ∆, and γ∗, which is determined

by ε and the utility function/cost function. For certain classes of utility functions/cost

functions, there are closed-form expressions for the optimal γ∗.
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From the two examples given in Section 2.6, we can see that although the Laplacian mech-

anism is not strictly optimal, in the high privacy regime (ε→ 0), the Laplacian mechanism

is asymptotically optimal:

• For the expectation of noise amplitude, the additive gap from the optimal values goes

to 0 as ε→ 0,

• For noise power, the additive gap from the optimal values is upper bounded by a

constant as ε→ 0.

However, in the low privacy regime (ε → +∞), the multiplicative gap from the optimal

values can be arbitrarily large. We conclude that in the high privacy regime, the Laplacian

mechanism is nearly optimal, while in the low privacy regime, significant improvement can be

achieved by using the staircase mechanism. We plot the multiplicative gain of the staircase

mechanism over the Laplacian mechanism for expectation of noise amplitude and noise power

in Figure 2.7, where VOptimal is the optimal (minimum) cost, which is achieved by the staircase

mechanism, and VLap is the cost of the Laplacian mechanism. We can see that for ε ≈ 10,

the staircase mechanism has about 15-fold and 23-fold improvement, with noise amplitude

and power, respectively.

Since the staircase mechanism is derived under the same problem setting as the Laplacian

mechanism, the staircase mechanism can be applied wherever the Laplacian mechanism is

used, and it performs strictly better than the Laplacian mechanism (and significantly better

in low privacy scenarios).

(a) 0 < ε ≤ 10 (b) 10 ≤ ε ≤ 20

Figure 2.7: Multiplicative Gain of the Staircase Mechanism over the Laplacian Mechanism

2.10.2 Relation to Ghosh et al. [7]

Ghosh, Roughgarden, and Sundararajan [7] show that for a single count query with sensi-

tivity ∆ = 1, for a general class of utility functions, to minimize the expected cost under a
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Bayesian framework the optimal mechanism to preserve differential privacy is the geometric

mechanism, which adds noise with geometric distribution.

We discuss the relations and differences between [7] and our work in the following: Both

[7] and our work are similar in that, given the query output, the cost function only depends

on the additive noise magnitude, and is an increasing function of noise magnitude. On the

other hand, there are two main differences:

• Ghosh et al. [7] works under a Bayesian setting, while ours minimizes the worst-case

cost.

• Ghosh et al. [7] studies a count query where the query output is integer-valued and

bounded, and the sensitivity is unity. In our work, we first study a general real-valued

query function where the query output can take any real value, and then generalize

the result to the discrete setting where query output is integer valued. In both cases,

the sensitivity of query functions can be arbitrary, not restricted to one.

2.10.3 Relation to Gupte and Sundararajan [9]

Gupte and Sundararajan [9] derive the optimal noise probability distributions for a single

count query with sensitivity ∆ = 1 for minimax (risk-averse) users. Their model is the same

as the one in [7] except that their objective function is to minimize the worst-case cost, the

same as our objective. Gupte and Sundararajan [9] show that although for a general class of

cost functions, there is no universally optimal solution to the minimax optimization problem

in [9], each solution (corresponding to different cost functions) can be derived from the same

geometric mechanism by randomly remapping.

As in [7], [9] assumes the query-output is bounded. Our results show that when the query

sensitivity is one, without any boundedness knowledge about the query-output, the optimal

mechanism is to add random noise with geometric distribution to the query output.

2.10.4 Relation to Brenner and Nissim [8]

While [7] shows that for a single count query with sensitivity ∆ = 1, there is a universally

optimal mechanism for a general class of utility functions under a Bayesian framework, Bren-

ner and Nissim [8] show that for general query functions, no universally optimal mechanisms

exist. Indeed, this follows directly from our results: under our optimization framework, the

optimal mechanism is adding noise with staircase-shaped probability distribution which is
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specified by three parameters ε,∆, and γ∗, where in general γ∗ depends on the cost func-

tion. Generally, for different cost functions, the optimal noise probability distributions have

staircase-shaped probability density functions specified by different parameters.

2.10.5 Relation to Nissim, Raskhodnikova, and Smith [48]

Nissim, Raskhodnikova, and Smith [48] show that for certain nonlinear query functions,

one can improve the accuracy by adding data-dependent noise calibrated to the smooth

sensitivity of the query function, which is based on the local sensitivity of the query function.

In our model, we use the global sensitivity of the query function only, and assume that the

local sensitivity is the same as the global sensitivity, which holds for a general class of query

functions, e.g., count, sum.

2.10.6 Relation to Hardt and Talwar [4]

Hardt and Talwar [4] study the trade-off between privacy and error for answering a set of

linear queries over a histogram in a differentially private way. The error is defined as the

worst expectation of the `2-norm of the noise. The lower bound given in [4] is Ω(ε−1d
√
d),

where d is the number of linear queries. An immediate consequence of our result is that for

fixed d, when ε→ +∞, an upper bound of Θ(e−
ε

3dd
√
d) is achievable by adding independent

staircase-shaped noise with parameter ε
d

to each component.

2.10.7 Relation to Other Works

Many existing works study how to improve the accuracy for answering more complex queries

under differential privacy, in which the basic building block is the standard Laplacian mech-

anism. For example, Hay et al. [49] show that one can improve the accuracy for a general

class of histogram queries, by exploiting the consistency constraints on the query output,

and Li et al. [6] study how to optimize linear counting queries under differential privacy

by carefully choosing the set of linear queries to be answered. In these works, the error is

measured by the mean squared error of query output estimates, which corresponds to the

variance of the noise added to the query output to preserve differential privacy. In terms

of ε, the error bound in these works scales linearly to 1
ε2

, because of the use of Laplacian

noise. If Laplacian distribution is replaced by staircase distribution in these works, one can

improve the error bound to Θ(e−Cε) (for some constant C which depends on the number of

queries) when ε→ +∞ (corresponding to the low privacy regime).
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CHAPTER 3

THE OPTIMAL MECHANISM IN ε-DIFFERENTIAL
PRIVACY: MULTIPLE DIMENSIONAL SETTING

In this chapter, we extend the staircase mechanism from the single dimensional setting to

the multiple dimensional setting. We show that for histogram-like query functions, when

the dimension of the query output is two, the multiple dimensional staircase mechanism is

optimal for the `1 cost function. We give the problem formulation in Section 3.1, and present

the main result on the opitmality of the multiple dimensional staircase mechanism in Section

3.2. In Section 3.3, we study the asymptotical performance of the optimal mechanism in

the high and low privacy regimes. Comparing the optimal performances with those of the

Laplacian mechanism, we conclude that in the multiple dimensional setting, the Laplacian

mechanism is asymptotically optimal in the high privacy regime, and the staircase mechanism

significantly outperforms the Laplacian mechanism in the low privacy regime.

3.1 Problem Formulation

Consider a multiple dimensional real-valued query function

q : Dn → Rd,

where Dn is the domain of the databases, and d is the dimension of the query output. Given

D ∈ Dn, the query output can be written as

q(D) = (q1(D), q2(D), . . . , qd(D)),

where qi(D) ∈ R,∀1 ≤ i ≤ d.

The sensitivity of the query function q is defined as

∆ , max
D1,D2⊆Dn:|D1−D2|≤1

‖q(D1)− q(D2)‖1 =
d∑
i=1

|qi(D1)− qi(D2)|, (3.1)

where the maximum is taken over all possible pairs of neighboring database entries D1 and

32



D2 which differ in at most one element, i.e., one is a proper subset of the other and the larger

database contains just one additional element [3].

Definition 3.1 (ε-Differential Privacy [3]). A randomized mechanism K gives ε-differential

privacy if for all data sets D1 and D2 differing in at most one element, and all S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ eε Pr[K(D2) ∈ S]. (3.2)

The standard approach to preserving the differential privacy is to add noise to the output

of the query function. Let q(D) be the value of the query function evaluated at D ⊆ Dn.

Then the noise-adding mechanism K will output

K(D) = q(D) +X = (q1(D) +X1, . . . , qd(D) +Xd),

where X = (X1, . . . , Xd) ∈ Rd is the noise added by the mechanism to the output of the

query function.

In the following, we derive the differential privacy constraint on the probability distribu-

tion of X from (3.2).

Pr[K(D1) ∈ S] ≤ eε Pr[K(D2) ∈ S]

⇔ Pr[q(D1) +X ∈ S] ≤ eε Pr[q(D2) +X ∈ S]

⇔ Pr[X ∈ S − q(D1)] ≤ eε Pr[X ∈ S − q(D2)]

⇔ Pr[X ∈ S ′] ≤ eε Pr[X ∈ S ′ + q(D1)− q(D2)], (3.3)

where S ′ , S − q(D1) = {s− q(D1)|s ∈ S}.
Since (3.2) holds for all measurable sets S ⊆ Rd, and ‖q(D1)− q(D2)‖1 ≤ ∆, from (3.3)

we have

Pr[X ∈ S ′] ≤ eε Pr[X ∈ S ′ + t], (3.4)

for all measurable sets S ′ ⊆ R and for all t ∈ Rd such that ‖t‖1 ≤ ∆.

Consider a cost function L(·) : Rd → R which is a function of the added noise X. Our

goal is to minimize the expectation of the cost, subject to the ε-differential privacy constraint

(3.4).

More precisely, let P denote the probability distribution of X and let P(S) denote the

probability Pr[X ∈ S]. The optimization problem we study in this work is
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minimize
P

∫ ∫
. . .

∫
Rd
L(x1, x2, . . . , xd)P(dx1dx2 . . . dxd) (3.5)

subject to P(S) ≤ eεP(S + t),∀ measurable set S ⊆ Rd, ∀‖t‖1 ≤ ∆. (3.6)

We solve the above functional optimization problem and derive the optimal noise prob-

ability distribution for L(x1, . . . , xd) =
∑d

i=1 |xi|, with d = 2.

3.2 Main Result

In this section we state our main result, Theorem 3.1. The detailed proof is given in Appendix

B.1.

We consider the `1 cost function:

L(x1, x2, . . . , xd) =
d∑
i=1

|xi|,∀(x1, x2, . . . , xd) ∈ Rd.

Consider a class of multiple dimensional probability distributions with symmetric and

staircase-shaped probability density functions defined as follows. Given γ ∈ [0, 1], define Pγ
as the probability distribution with probability density function fγ(·) defined as

fγ(x) =

e−kεa(γ) ‖x‖1 ∈ [k∆, (k + γ)∆) for k ∈ N

e−(k+1)εa(γ) ‖x‖1 ∈ [(k + γ)∆, (k + 1)∆) for k ∈ N,

where a(γ) is the normalization factor to make∫ ∫
. . .

∫
Rd
fγ(x)dx1dx2 . . . dxd = 1.

Define b , e−ε, and define

ck ,
+∞∑
i=0

ikbi,∀k ∈ N,

where by convention 00 is defined as 1. Then the closed-form expression for a(γ) is

a(γ) ,
d!

2d∆d
∑d

k=1

(
d
k

)
cd−k(b+ (1− b)γk)

.
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Figure 3.1: Multiple Dimensional Staircase-Shaped Probability Density Function for d = 2

It is straightforward to verify that fγ(·) is a valid probability density function and Pγ
satisfies the differential privacy constraint (3.6). Indeed, the probability density function

fγ(x) satisfies

fγ(x) ≤ eεfγ(x + t), ∀x ∈ Rd,∀t ∈ Rd s.t. ‖t‖1 ≤ ∆,

which implies (3.6).

We plot the probability density function fγ(x) in Figure 3.1 for d = 2. It is easy to see

that fγ(x) is multiple dimensionally staircase-shaped.

Let SP be the set of all probability distributions which satisfy the differential privacy

constraint (3.6). Our main result is

Theorem 3.1. For d = 2 and the cost function L(x) = ‖x‖1,∀x ∈ R2, then

inf
P∈SP

∫ ∫
R2

L(x)P(dx1dx2) = inf
γ∈[0,1]

∫ ∫
R2

L(x)fγ(x)dx1dx2.

Proof. See Appendix B.1.

Therefore, the optimal noise probability distribution to preserve ε-differential privacy

for multiple dimensional real-valued query functions has a multiple dimensionally staircase-

shaped probability density function, which is specified by three parameters ε, ∆, and γ∗ =
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arg min
γ∈[0,1]

∫ ∫
R2 L(x1, x2)fγ(x)dx1dx2.

3.3 Optimal γ∗ and Asymptotic Analysis

Note that the closed-form expressions for c0, c1 and c2 are

c0 =
1

1− b
,

c1 =
b

(1− b)2
,

c2 =
b2 + b

(1− b)3
.

For d = 2, we have

a(γ) =
1

2∆2 (2c1(b+ (1− b)γ) + c0(b+ (1− b)γ2))

=
1

2∆2
(
γ2 + 2b

1−bγ + b+b2

(1−b)2

) .
Given the two-dimensional staircase-shaped probability density function fγ(x), the cost

is

V (Pγ) ,
∫ ∫

R2

(|x1|+ |x2|)fγ(x1, x2)P(dx1dx2)

= 4

(
+∞∑
i=0

∫ (i+γ)∆

i∆

tta(γ)e−iεdt+
+∞∑
i=0

∫ (i+1)∆

(i+γ)∆

tta(γ)e−(i+1)εdt

)

=
4a(γ)∆3

3

(
+∞∑
i=0

bi(3i2γ + 3iγ2 + γ3) + b

+∞∑
i=0

bi(3i2 + 3i+ 1− 3i2γ − 3iγ2 − γ3)

)

=
4a(γ)∆3

3

(
3c2γ + 3c1γ

2 + c0γ
3 + b(3(1− γ)c2 + 3(1− γ2)c1 + (1− γ3)c0)

)
=

2∆

3

3c2γ + 3c1γ
2 + c0γ

3 + b(3(1− γ)c2 + 3(1− γ2)c1 + (1− γ3)c0)

γ2 + 2b
1−bγ + b+b2

(1−b)2

=
2∆

3

c0(1− b)γ3 + 3c1(1− b)γ2 + 3c2(1− b)γ + b(c0 + 3c1 + 3c2)

γ2 + 2b
1−bγ + b+b2

(1−b)2

=
2∆

3

γ3 + 3b
1−bγ

2 + 3(b2+b)
(1−b)2 γ + b1+4b+b2

(1−b)3

γ2 + 2b
1−bγ + b+b2

(1−b)2

. (3.7)
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Figure 3.2: The Optimal γ∗ as a Function of b

Therefore, in the two-dimensional setting, the optimal γ∗ is

γ∗ = arg min
γ∈[0,1]

γ3 + 3b
1−bγ

2 + 3(b2+b)
(1−b)2 γ + b1+4b+b2

(1−b)3

γ2 + 2b
1−bγ + b+b2

(1−b)2

.

By setting the derivative of (3.7) to be zero, we use Mathematica to get a closed-form

expression for γ∗, which is too complicated to show here. We plot γ∗ as a function of b in

Figure 3.2.

The optimal cost V ∗ = V (Pγ∗). We use Mathematica to analyze the asymptotic behavior

of V ∗ as ε→ 0 and ε→ +∞. Indeed, we have

Corollary 3.2. In the high privacy regime,

V ∗ =
2∆

ε
− ∆ε2

36
√

3
+O(ε3), ε→ 0,

and in the low privacy regime,

V ∗ =
3
√

2∆e−
ε
3 +

∆e−
2ε
3

3
√

2
+ o(e−

2ε
3 ), ε→ +∞.

The Laplacian mechanism adds independent Laplacian noise to each component of the

query output, and the cost is 2∆
ε

. Therefore, in the high privacy regime, the gap between
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optimal cost and the cost achieved by the Laplacian mechanism goes to zero, as ε→ 0, and

we conclude the Laplacian mechanism is approximately optimal in the high privacy regime.

However, in the low privacy regime (as ε → +∞), the optimal cost is proportional to e−
ε
3 ,

while the cost of the Laplacian mechanism is proportional to 1
ε
. We conclude the gap is

significant in the low privacy regime.

It is natural to compare the performance of the optimal multiple dimensional staircase

mechanism and the composite single dimensional staircase mechanism which adds indepen-

dent staircase noise to each component of the query output. If independent staircase noise

is added to each component of the query output, to satisfy the ε-differential privacy con-

straint, the parameter of the staircase noise is ε
2

instead of ε, and thus the total cost will be

proportional to e−
ε
4 , which is worse than the optimal cost Θ(e−

ε
3 ).
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CHAPTER 4

THE OPTIMAL MECHANISM IN
(ε, δ)-DIFFERENTIAL PRIVACY

In this chapter, we study the optimal mechanism in (ε, δ)-differential privacy for integer-

valued query functions. We show that the (ε, δ)-differential privacy is a framework not much

more general than the (ε, 0)-differential privacy and (0, δ)-differential privacy in the context

of `1 and `2 cost functions, i.e., minimum expected noise magnitude and noise power. In

the same context of `1 and `2 cost functions, we show the near-optimality of uniform noise

mechanism and the discrete Laplacian mechanism in the high privacy regime (as (ε, δ) →
(0, 0)).

We formulate the utility-maximization/cost-minimization under the (ε, δ)-differential pri-

vacy constraint as a linear programming problem in Section 4.2. In Section 4.3, we study

(0, δ)-differential privacy, and show the near-optimality of the simple uniform noise mech-

anism. In Section 4.4, we study the optimal mechanisms in (ε, δ)-differential privacy, and

show the optimality of the uniform noise mechanism and the Laplacian mechanism in the

regime (ε, δ)→ (0, 0) in the context of `1 and `2 cost functions. In Section 4.5, we extend the

results to the multiple dimensional setting where the query output is a vector of integers.

4.1 Introduction

(ε, δ)-differential privacy is a relaxed notion of privacy, compared to the standard ε-differential

privacy introduced in [11]. (ε, δ)-differential privacy includes as special cases:

• (ε, 0)-differential privacy. In this standard setting, the optimal mechanism for a general

cost minimization framework is the staircase mechanism as shown in [50]. In the high

privacy regime, the standard discrete Laplacian mechanism also performs well.

• (0, δ)-differential privacy. This setting requires that the total variation of the condi-

tional probability distributions of the query output for neighboring datasets should be

bounded by δ. We show that the uniform noise distribution is near-optimal in the

(0, δ)-differential privacy setting for a general class of cost functions.
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While the (ε, δ)-differential privacy setting is more general than the two special cases –

(ε, 0) and (0, δ)-differential privacy – our main result in this chapter is to show that it is only

more general by very little; this is done in the context of `1 and `2 cost functions. We show

the near-optimality of uniform noise mechanism and discrete Laplacian mechanisms in the

high privacy regime (as (ε, δ)→ (0, 0)) for `1 and `2 cost functions.

The near-optimality of the two mechanisms (designed for the special cases of (ε, 0) and

(0, δ) differential privacy settings) is proved by demonstrating a uniform bound on the ratio

between the costs of these two mechanisms and that of the optimal cost in the (ε, δ) differ-

ential privacy setting in the high privacy regime, i.e., as (ε, δ) → (0, 0) for `1 and `2 cost

functions.

4.1.1 Summary of Our Results

We summarize our results in the following. Let VLB denote the lower bound we derived for

the cost under the differential privacy constraint. Let V
Lap
UB and V uniform

UB denote the upper

bounds for the cost achieved by the discrete Laplacian mechanism and the uniform noise

mechanism. We show that

• For integer-valued query functions,

– for (0, δ)-differential privacy with the global sensitivity ∆ = 1, the uniform noise

mechanism is optimal for all generic cost funtions,

– for (0, δ)-differential privacy with arbitrary global sensitivity ∆,

lim
δ→0

V uniform
UB

VLB
= 1

for `1 and `2 cost functions,

– for (ε, δ)-differential privacy with `1 and `2 cost functions,

lim
(ε,δ)→(0,0)

min(V
Lap
UB , V uniform

UB )

VLB
≤ C

for some numerical constant C.

• For multiple dimensional integer-valued query functions,

– for (0, δ)-differential privacy with the global sensitivity ∆ = 1, the multiple di-

mensional uniform noise mechanism is optimal for `1 and `2 cost funtions,
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– for (0, δ)-differential privacy with arbitrary global sensitivity ∆, limδ→0
Vuniform
UB

VLB
=

1 for `1 and `2 cost functions,

– for (ε, δ)-differential privacy with `1 and `2 cost functions,

lim
(ε,δ)→(0,0)

min(V
Lap
UB , V uniform

UB )

VLB
≤ C

for some numerical constant C, which is independent of the dimension of the

query function.

4.2 Problem Formulation

Consider an integer-valued query function

q : Dn → Z,

where Dn is the domain of the databases.

The sensitivity of the query function q is defined as

∆ , max
D1,D2⊆Dn:|D1−D2|≤1

|q(D1)− q(D2)|, (4.1)

where the maximum is taken over all possible pairs of neighboring database entries D1 and

D2 which differ in at most one element, i.e., one is a proper subset of the other and the larger

database contains just one additional element [3]. Clearly, ∆ is an integer in this discrete

setting.

Definition 4.1 ((ε, δ)-Differential Privacy [18]). A randomized mechanism K gives ε-differential

privacy if for all data sets D1 and D2 differing in at most one element, and all S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) Pr[K(D2) ∈ S] + δ. (4.2)

4.2.1 Operational Meaning of (ε, δ)-Differential Privacy in the Context of
Hypothesis Testing

As shown by [10], one can interpret the differential privacy constraint (4.2) in the context

of hypothesis testing in terms of false alarm probability and missing detection probability.

Indeed, consider a binary hypothesis testing problem over two neighboring datasets, H0 : D1
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versus H1 : D2, where an individual’s record is in D2 only. Given a decision rule, let S be the

decision region such that when the released output lies in S, H1 will be rejected, and when

the released output lies in SC (the complement of S), H0 will be rejected. The false-alarm

probability PFA and the missing-detection probability PMD can be written as

PFA = P (K(D1) ∈ SC),

PMD = P (K(D2) ∈ S).

Therefore, from (4.2) we get

1− PFA ≤ eεPMD + δ.

Thus

eεPMD + PFA ≥ 1− δ.

Switch D1 and D2 in (4.2), and we get

Pr[K(D2) ∈ S] ≤ exp(ε) Pr[K(D1) ∈ S] + δ.

Therefore,

1− PMD ≤ eεPFA + δ,

and thus

PMD + eεPFA ≥ 1− δ.

In conclusion, we have

eεPMD + PFA ≥ 1− δ,

PMD + eεPFA ≥ 1− δ.

The (ε, δ)-differential privacy constraint implies that in the context of hypothesis testing,

PFA and PMD cannot both be too small.

We plot the regions of PFA and PMD under (ε, δ)-differential privacy, and under two

special cases: (ε, 0) and (0, δ)-differential privacy, in Figure 4.1.
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(a) (ε, δ)-Differential Privacy

(b) (ε, 0)-Differential Privacy (c) (0, δ)-Differential Privacy

Figure 4.1: Regions of PMD and PFA in (ε, δ), (ε, 0) and (0, δ)-Differential Privacy

4.2.2 Cost-Minimization/Utility-Maximization Formulation

The standard approach to preserving the differential privacy is to add noise to the output

of query function. Let q(D) be the value of the query function evaluated at D ⊆ Dn, the

noise-adding mechanism K will output

K(D) = q(D) +X,

where X is the noise added by the mechanism to the output of query function. To make the

output of the mechanism be valid, i.e., q(D) +X ∈ Z, X can only take integer values.

Let P be the probability mass function of the noise X, and let Pi denote Pr[X = i]. For

a set S ⊂ Z, denote Pr[X ∈ S] by PS.

In the following we derive the differential privacy constraint on the probability distribu-
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tion of X from (4.2).

Pr[K(D1) ∈ S] ≤ exp(ε) Pr[K(D2) ∈ S] + δ

⇔ Pr[q(D1) +X ∈ S] ≤ exp(ε) Pr[q(D2) +X ∈ S] + +δ

⇔ PS−q(D1) ≤ exp(ε) PS−q(D2) + δ

⇔ PS′ ≤ exp(ε) PS′+q(D1)−q(D2) + δ, (4.3)

where S ′ , S − q(D1) = {s− q(D1)|s ∈ S}.
Since (4.2) holds for any set S ⊆ Z, and |q(D1)− q(D2)| ≤ ∆, from (4.3), we have

PS ≤ exp(ε) PS+d + δ, (4.4)

for any set S ⊆ Z and for all |d| ≤ ∆.

Consider a cost function L(·) : Z→ R, which is a function of the added noise X. Our goal

is to minimize the expectation of the cost subject to the (ε, δ)-differential privacy constraint

(4.4):

V ∗ := min
P

+∞∑
i=−∞

L(i)P(i)

subject to PS ≤ exp(ε) PS+d + δ, ∀S ⊂ Z, d ∈ Z, |d| ≤ |∆|.

We restrict our attention to the scenario when the cost function L(k) is symmetric

(around k = 0) and monotonically increasing for k ≥ 0. Furthermore, without loss of

generality, we assume L(0) = 0. Using the same argument in Lemma 28 in [50], we only

need to consider symmetric noise probability distributions.

4.3 (0, δ)-Differential Privacy

We first consider the simple case when ε = 0, i.e., (0, δ)-differential privacy. The (0, δ)-

differential privacy constraint requires that the total variation of the conditional probability

distributions of the query output for neighboring datasets should be bounded by δ.

In the differential privacy constraint (4.4), by choosing the subset S = Sk := {` : ` ≥ k}
for k ∈ N and d = ∆, we see that the noise probability distribution P must satisfy the
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constraints

∆−1∑
`=0

Pk+` ≤ δ, ∀k ∈ N. (4.5)

4.3.1 ∆ = 1

In the special case ∆ = 1, the constraints in (4.5) are particularly simple:

pk ≤ δ; ∀k ≥ 0.

For symmetric cost functions L(k) that are monotonically increasing in k ≥ 0, we can now

readily argue that the uniform probability distribution is optimal.

To avoid integer rounding issues, assume 1
2δ

is an integer.

Theorem 4.1. If ∆ = 1, then

V ∗ =

1
2δ
−1∑

k=− 1
2δ

δL(k),

and the optimal noise probability distribution is

Pk =

δ − 1
2δ
≤ k ≤ 1

2δ
− 1

0 otherwise
. (4.6)

4.3.2 General Lower Bound for ∆ ≥ 2

We now turn to understanding near-optimal (0, δ) privacy mechanisms in terms of minimizing

the expected loss when the sensitivity ∆ ≥ 2.

Recall that in (0, δ)-differential privacy, the minimum cost V ∗ is the result of the following

optimization problem, which is a linear program:

V ∗ := min
+∞∑

k=−∞

L(k)Pk

such that pk ≥ 0 ∀k ∈ N
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+∞∑
k=−∞

Pk = 1

PS ≤ PS+d + δ,∀S ⊂ Z, d ∈ Z, |d| ≤ |∆|. (4.7)

Since L(·) is a symmetric function, we can assume P is a symmetric probability distri-

bution. In addition, we relax the constraint (4.7) by choosing d = ∆ and S = Sk for k ∈ N.

Then we get a relaxed linear program, the solution of which is a lower bound for V ∗. More

precisely,

VLB := min 2
∞∑
k=1

L(k)Pk (4.8)

such that Pk ≥ 0 ∀k ∈ N

P0

2
+
∞∑
k=1

Pk ≥
1

2
(4.9)

−
∆−1∑
`=0

Pk+` ≥ −δ, ∀k ∈ N. (4.10)

To avoid integer rounding issues, assume 1
2δ

is a positive integer.

Theorem 4.2. If

L(1 +
∆

2δ
) ≥ 2

L(1) +

1
2δ∑
i=1

(L(1 + i∆)− L(i∆))

 , (4.11)

then

V ∗ ≥ VLB = 2δ

1
2δ
−1∑

i=0

L(1 + i∆). (4.12)

Proof. See Appendix C.1.
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4.3.3 Uniform Noise Mechanism

Consider the noise with the uniform probability distribution:

Pk =

 δ
∆
∀ − ∆

2δ
≤ k ≤ ∆

2δ
− 1

0 otherwise
(4.13)

It is readily verified that this noise probability distribution satisfies the (0, δ) differential

privacy constraint. Therefore, an upper bound for V ∗ is

Theorem 4.3.

V ∗ ≤ VUB , 2

∆
2δ
−1∑

i=1

δ

∆
L(i) +

δ

∆
L(

∆

2δ
). (4.14)

4.3.4 Comparison of VLB and VUB

We first apply the lower bound (4.12) and upper bound (4.14) to the `1 and `2 cost functions,

i.e., L(i) = |i| and L(i) = i2, in which V ∗ corresponds to the minimum expected noise

amplitude and minimum noise power, respectively.

Note that in the case L(i) = |i|, the condition (4.11) in Theorem 4.2 is

∆

2δ
≥ 1

δ
+ 1. (4.15)

When ∆ ≥ 3, (4.11) holds.

Corollary 4.4. For the cost function L(i) = |i|,

VLB =
∆

4δ
+ 1− ∆

2
,

VUB =
∆

4δ
,

and thus the additive gap

VUB − VLB =
∆

2
− 1

is a constant independent of δ.
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In the case L(i) = i2, the condition (4.11) in Theorem 4.2 is

∆

2δ2
(
∆

2
− 1) ≥ 1

δ
+ 1. (4.16)

When ∆ ≥ 3, (4.16) holds.

Corollary 4.5. For the cost function L(i) = i2,

VLB =
∆2

12δ2
− ∆2

4δ
+ ∆(

1

2δ
− 1) +

∆2

6
+ 1,

VUB =
∆2

12δ2
+

1

6
,

and thus the multiplicative gap

lim
δ→0

VUB
VLB

= 1.

Proof. See Appendix C.2.

Corollary 4.6. Given a positive integer m, consider the cost function L(i) = |i|m. Then

lim
δ→0

VUB
VLB

= 1.

Proof. By induction, it is easy to show that
∑n

i=1 i
m = Θ(n

m+1

m+1
), and

lim
n→+∞

∑n
i=1 i

m

nm+1

m+1

= 1.

Therefore,

lim
δ→0

VUB
VLB

= lim
δ→0

2 δ
∆

∑ ∆
2δ
−1

i=1 im + δ
∆

∆m

(2δ)m

2δ
∑ 1

2δ
−1

i=0 (1 + i∆)m

= lim
δ→0

2 δ
∆

∆m+1

(2δ)m+1

m+1

2δ∆m ( 1
2δ

)m+1

m+1

= 1.

For general cost functions, we have the following bound on the multiplicative gap between

the lower bound and upper bound.
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Corollary 4.7. Given a cost function L(·) satisfying

sup
k≥T

L(k)

L(k −∆ + 1)
≤ C,

for some integer T ∈ N, and some positive number C ∈ R, then

lim
δ→0

VUB
VLB

≤ 1 + (1 +
1

2∆
)C.

Proof. See Appendix C.3.

4.4 (ε, δ)-Differential Privacy

Recall that since L(·) is a symmetric function, without loss of generality, we can restrict

ourselves to symmetric noise probability distributions, i.e.,

Pk = P−k,∀k ∈ Z. (4.17)

The differential privacy constraint in (4.4) can be understood in some detail by choosing

the subset S = Sk := {` : ` ≥ k} for k ∈ N. In this case we see that the noise probability

distribution must satisfy the following constraints. For k = 0 and d = ∆,

PS0 ≤ eεPS∆
+ δ. (4.18)

By using the symmetry condition in (4.17) and the fact that
∑+∞

`=−∞P` = 1, from (4.18)

we get

P0
1 + eε

2
+ eε

∆−1∑
`=1

P` ≤ δ +
eε − 1

2
.

For k = 1 and d = ∆, we have

PS1 ≤ eεPS∆+1
+ δ,

and thus

P0
eε − 1

2
+ eε

∆∑
`=1

P` ≤ δ +
eε − 1

2
.
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For general k ≥ 2 and d = ∆, we have

PSk ≤ eεPS∆+k
+ δ,

and thus

P0
eε − 1

2
+ (eε − 1)

k−1∑
`=1

P` + eε
k+∆−1∑
`=k

P` ≤ δ +
eε − 1

2
.

4.4.1 Lower Bound

By restricting the set S in (4.4) to be Sk := {` : ` ≥ k} for k ∈ Z and restricting d to be ∆,

we get the following relaxed linear program, the solution of which is a lower bound for V ∗:

VLB := min 2
∞∑
k=1

L(k)Pk

such that Pk ≥ 0 ∀k ∈ N

P0

2
+
∞∑
k=1

Pk ≥
1

2
(4.19)

P0
1 + εε

2
+ eε

∆−1∑
k=1

Pk ≤ δ +
eε − 1

2
(4.20)

P0
eε − 1

2
+ eε

∆∑
k=1

Pk ≤ δ +
eε − 1

2
(4.21)

P0
eε − 1

2
+ (eε − 1)

i−1∑
k=1

Pk + eε
i+∆−1∑
k=i

Pk ≤ δ +
eε − 1

2
,∀i ≥ 2. (4.22)

Define

a ,
δ + eε−1

2

eε
,

b , e−ε.

To avoid integer rounding issues, assume that there exists an integer n such that

n−1∑
k=0

abk =
1

2
.
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Theorem 4.8. If

n−1∑
i=1

e−iε(2L(i∆)− L(1 + (i− 1)∆)− L(1 + i∆)) ≥ L(1),

then we have

V ∗ ≥ VLB = 2
n−1∑
k=0

δ + eε−1
2

eε
e−kεL(1 + k∆). (4.23)

Proof. See Appendix C.4.

4.4.2 Upper Bound: the Uniform Noise Mechanism and the Discrete
Laplacian Mechanism

Since (0, δ)-differential privacy implies (ε, δ)-differential privacy, we can use the uniform noise

mechanism with noise probability distribution defined in (4.13) to preserve (ε, δ)-differential

privacy, and the corresponding upper bound is

Theorem 4.9. For (ε, δ)-differential privacy, we have

V ∗ ≤ V
uniform
UB = 2

∆
2δ
−1∑

i=1

δ

∆
L(i) +

δ

∆
L(

∆

2δ
). (4.24)

On the other hand, if we simply ignore the parameter δ (i.e., set δ = 0), we can use

a discrete variant of Laplacian distribution to satisfy the (ε, 0)-differential privacy, which

implies (ε, δ)-differential privacy.

More precisely, define λ , e−
ε
∆ .

Theorem 4.10. The probability distribution P with

pk ,
1− λ
1 + λ

λ|k|,∀k ∈ Z,

satisfies the (ε, δ)-differential privacy constraint, and the corresonding cost is

+∞∑
k=−∞

pkL(k) = 2
+∞∑
k=1

1− λ
1 + λ

λkL(k).
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Corollary 4.11.

V ∗ ≤ V
Lap
UB , 2

+∞∑
k=1

1− λ
1 + λ

λkL(k). (4.25)

4.4.3 Comparison of Lower Bound and Upper Bound

In this section, we compare the lower bound (4.23) and the upper bounds V uniform
UB and

V
Lap
UB for (ε, δ)-differential privacy for the `1 and `2 cost functions, i.e., L(i) = |i| and

L(i) = i2, in which V ∗ corresponds to the minimum expected noise amplitude and minimum

noise power, respectively. We show that the multiplicative gap between the lower bound and

upper bound is bounded by a constant as (ε, δ)→ (0, 0).

ε ≤ δ Regime

We first compare the gap between the lower bound VLB and the upper bound V uniform
UB in

the regime ε ≤ δ as δ → 0.

Corollary 4.12. For the cost function L(k) = |k|, in the regime ε ≤ δ, we have

lim
δ→0

V
uniform
UB

VLB
≤ 1

4(1− 2 log 3
2
)
≈ 1.32

Proof. See Appendix C.5.

Corollary 4.13. For the cost function L(k) = k2, in the regime ε ≤ δ, we have

lim
δ→0

V
uniform
UB

VLB
≤ 1

12(2− 4 log(3
2
)− 2(log(3

2
))2)
≈ 5

3
.

Proof. See Appendix C.6.

δ ≤ ε Regime

We then compare the gap between the lower bound VLB and the upper bound V
Lap
UB in the

regime δ ≤ ε as ε→ 0.
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Corollary 4.14. For the cost function L(k) = |k|, in the regime δ ≤ ε, we have

lim
ε→0

V
Lap
UB

VLB
≤ 1

1− 2 log 3
2

≈ 5.29.

Proof. See Appendix C.7.

Corollary 4.15. For the cost function L(k) = k2, in the regime ε ≤ δ, we have

lim
δ→0

V
Lap
UB

VLB
≤ 2

(2− 4 log(3
2
)− 2(log(3

2
))2)
≈ 40.

Proof. See Appendix C.8.

4.5 (ε, δ)-Differential Privacy in the Multiple Dimensional Setting

In this section we consider the (ε, δ)-differential privacy in the multiple dimensional setting,

where the query output has multiple components and the global sensitivity ∆ is defined as

the maximum `1 norm of the difference of the query outputs over two neighboring datasets.

Let d be the dimension of the query output. Hence, the query output q(D) ∈ Zd. Let

P be the probability mass function of the additive noise over the domain Zd. Then the

(ε, δ)-differential privacy constraint on P in the multiple dimensional setting is that

PS ≤ PS+v + δ, ∀S ⊂ Zd,v ∈ Zd, ‖v‖1 ≤ ∆. (4.26)

Consider a cost function L(·) : Zd → R, which is a function of the added noise X.

Our goal is to minimize the expectation of the cost subject to the (ε, δ)-differential privacy

constraint (4.26):

V ∗ := min
P

∑
v∈Zd
L(v)P(v)

subject to PS ≤ PS+v + δ, ∀S ⊂ Zd,v ∈ Zd, ‖v‖1 ≤ ∆.

4.5.1 (0, δ)-Differential Privacy

We first consider the simple case when ε = 0, i.e., (0, δ)-differential privacy. The (0, δ)-

differential privacy constraint requires that the total variation of the conditional probability

distributions of the query output for neighboring datasets should be bounded by δ.
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In the differential privacy constraint (4.26), by choosing the subset

S = Smk := {(i1, i2, . . . , id) ∈ Zd | im ≥ k}

for k ∈ N, m ∈ {1, 2, . . . , d}, and choosing v such that only one compoment is ∆ and all

other components are zero, we see that the noise probability distribution P must satisfy the

constraints ∑
(i1,i2,...,id)∈Zd:k≤im≤k+∆−1

P(i1, i2, . . . , id) ≤ δ, ∀k ∈ N,∀m ∈ {1, 2, . . . , d}.

To avoid integer-rounding issues, we assume that 1
2δ

is an integer.

Lower Bound on V ∗

We relax the constraint (4.26) by choosing S to be Smk and choosing v such that only one

compoment is ∆ and all other components are zero. Then we get a relaxed linear program,

the solution of which is a lower bound for V ∗. More precisely,

V ∗ ≥ VLB := min
∑
i∈Zd
P(i)L(i) (4.27)

such that P(i) ≥ 0 ∀i ∈ Zd∑
i∈Zd
P(i) ≥ 1∑

(i1,i2,...,id)∈Zd:k≤im≤k+∆−1

P(i1, i2, . . . , id) ≤ δ, ∀k ∈ N,∀m ∈ {1, 2, . . . , d}.

Theorem 4.16. In the case L(i) = ‖i‖1,∀i ∈ Zd, we have

VLB ≥
d∆

4δ
− ∆− 1

2
d.

Proof. See Appendix C.9.

Theorem 4.17. In the case L(i) = ‖i‖2
2 =

∑d
m=1 i

2
m, ∀i = (i1, . . . , id) ∈ Zd, we have

VLB ≥
d∆2

12δ2
+ (

1

∆
− 1)

d∆2

4δ
+

1−∆

2
d+

d∆2

6
.

Proof. See Appendix C.10.
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Uniform Noise Mechanism in the Multiple Dimensional Setting

Consider the noise with the uniform probability distribution:

P(i1, i2, . . . , id) =

 δd

∆d −∆
2δ
≤ im ≤ ∆

2δ
− 1, ∀m ∈ {1, 2, . . . , d}

0 otherwise
. (4.28)

It is readily verified that this noise probability distribution satisfies the (0, δ) differential

privacy constraint (4.26). Therefore, an upper bound for V ∗ is

Theorem 4.18.

V ∗ ≤ VUB ,
∑

(i1,i2,...,id)∈Zd | − ∆
2δ
≤im≤ ∆

2δ
−1,∀m∈{1,2,...,d}

δd

∆d
L(i1, i2, . . . , id). (4.29)

Corollary 4.19. In the case L(i) = ‖i‖1, ∀i ∈ Zd, we have

VUB =
d∆

4δ
.

Proof.

VUB =
∑

(i1,i2,...,id)∈Zd | − ∆
2δ
≤im≤ ∆

2δ
−1,∀m∈{1,2,...,d}

δd

∆d
L(i1, i2, . . . , id)

=

∆
2δ
−1∑

i1=− ∆
2δ

· · ·
∆
2δ
−1∑

id=− ∆
2δ

δd

∆d
(|i1|+ · · ·+ |id|)

= d

∆
2δ
−1∑

i1=− ∆
2δ

· · ·
∆
2δ
−1∑

id=− ∆
2δ

δd

∆d
|i1|

= d

(
∆

δ

)d−1
∆
2δ
−1∑

i1=− ∆
2δ

δd

∆d
|i1|

= d

(
∆

δ

)d−1
δd

∆d

(
(1 + ∆

2δ
) ∆

2δ

2
+

∆
2δ

( ∆
2δ
− 1)

2

)
=
d∆

4δ
.
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Corollary 4.20. In the case L(i) = ‖i‖2
2 ,

∑d
m=1 i

2
m,∀i = (i1, . . . , id) ∈ Zd, we have

VUB =
d∆2

12δ2
+
d

6
.

Proof.

VUB =
∑

(i1,i2,...,id)∈Zd | − ∆
2δ
≤im≤ ∆

2δ
−1,∀m∈{1,2,...,d}

δd

∆d
L(i1, i2, . . . , id)

=

∆
2δ
−1∑

i1=− ∆
2δ

· · ·
∆
2δ
−1∑

id=− ∆
2δ

δd

∆d
(|i1|2 + · · ·+ |id|2)

= d

∆
2δ
−1∑

i1=− ∆
2δ

· · ·
∆
2δ
−1∑

id=− ∆
2δ

δd

∆d
|i1|2

= d

(
∆

δ

)d−1
∆
2δ
−1∑

i1=− ∆
2δ

δd

∆d
|i1|2

= d

(
∆

δ

)d−1
δd

∆d

(
∆
2δ

(1 + ∆
2δ

)(∆
δ

+ 1)

6
+

( ∆
2δ
− 1) ∆

2δ
(∆
δ
− 1)

6

)

=
d∆2

12δ2
+
d

6
.

Comparison of Lower Bound and Upper Bound for the `1 Cost Function

Corollary 4.21. For the cost function L(i) = ‖i‖1,

VLB ≥
d∆

4δ
− ∆− 1

2
d,

VUB =
d∆

4δ
,

and thus the additive gap

VUB − VLB ≤
∆− 1

2
d,

which is a constant independent of δ.

In the case that ∆ = 1, the additive gap ∆−1
2
d is zero, and thus VLB = VUB.
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Corollary 4.22. For the cost function L(i) = ‖i‖1, if ∆ = 1, then

V ∗ = VUB = VLB =
d∆

4δ
,

and thus the uniform noise mechanism is optimal in this setting.

Corollary 4.23. For the cost function L(i) = ‖i‖2
2,

VLB ≥
d∆2

12δ2
+ (

1

∆
− 1)

d∆2

4δ
+

1−∆

2
d+

d∆2

6
,

VUB =
d∆2

12δ2
+
d

6
,

and thus

lim
δ→0

VUB
VLB

= 1.

In the case that ∆ = 1,

VLB ≥
d

12δ2
+
d

6
= VUB,

and thus VLB = VUB.

Corollary 4.24. For the cost function L(i) = ‖i‖2
2, if ∆ = 1, then

V ∗ = VUB = VLB =
d

12δ2
+
d

6
,

and thus the uniform noise mechanism is optimal in this setting.

4.5.2 (ε, δ)-Differential Privacy

The (ε, δ)-differential privacy constraint on the probability mass function P in the multiple

dimensional setting is that

PS ≤ eεPS+v + δ, ∀S ⊂ Zd,v ∈ Zd, ‖v‖1 ≤ ∆.

We relax this constraint by choosing S to be Smk and choosing v such that only one

compoment is ∆ and all other components are zero. Then we get a relaxed linear program,

the solution of which is a lower bound for V ∗. More precisely,
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V ∗ ≥ VLB := min
∑
i∈Zd
P(i)L(i) (4.30)

such that P(i) ≥ 0 ∀i ∈ Zd∑
i∈Zd
P(i) ≥ 1

∀k ∈ N,∀m ∈ {1, 2, . . . , d},∑
(i1,i2,...,id)∈Zd:k≤im≤k+∆−1

P(i1, i2, . . . , id)− (eε − 1)
∑

(i1,i2,...,id)∈Zd:im≥k+∆

P(i1, i2, . . . , id) ≤ δ.

We are interested in characterizing V ∗ for the `1 and `2 cost functions in the high privacy

regime when (ε, δ)→ (0, 0).

Lower Bound for the `1 Cost Function

The dual linear program of (4.30) for the `1 cost function L(i) = ‖i‖1 is that

VLB := max µ− δ

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)

such that y
(1)
i1
, y

(2)
i2
, . . . , y

(d)
id
≥ 0, ∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

µ−
∑

i1∈[k1−∆+1,k1]

y
(1)
i1

+ (eε − 1)
∑

i1≤k1−∆

y
(1)
i1

− · · · −
∑

id∈[kd−∆+1,kd]

y
(d)
id

+ (eε − 1)
∑

id≤kd−∆

y
(d)
id

≤ |k1|+ |k2|+ · · ·+ |kd|,∀(k1, . . . , kd) ∈ Zd.

Given the parameters (ε, δ), let β = max(ε, δ). Since (β, β)-differential privacy is a relaxed

version of (ε, δ)-differential privacy, in the above dual program we can replace both ε and δ

by β, and the optimal value of the objective function will still be a lower bound of V ∗. More

precisely,

V ∗ ≥ V ′LB := max µ− β

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)
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such that y
(1)
i1
, y

(2)
i2
, . . . , y

(d)
id
≥ 0,∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

µ−
∑

i1∈[k1−∆+1,k1]

y
(1)
i1

+ (eβ − 1)
∑

i1≤k1−∆

y
(1)
i1

− · · · −
∑

id∈[kd−∆+1,kd]

y
(d)
id

+ (eβ − 1)
∑

id≤kd−∆

y
(d)
id

≤ |k1|+ |k2|+ · · ·+ |kd|,∀(k1, . . . , kd) ∈ Zd.

Theorem 4.25. For the `1 cost function,

lim
max(ε,δ)→0

V ′LB
d∆

max(ε,δ)

≥ log
9

8
≈ 0.1178.

Proof. See Appendix C.11.

Similarly, for the `2 cost function, we have the lower bound

V ∗ ≥ V ′LB := max µ− β

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)

such that y
(1)
i1
, y

(2)
i2
, . . . , y

(d)
id
≥ 0,∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

µ−
∑

i1∈[k1−∆+1,k1]

y
(1)
i1

+ (eβ − 1)
∑

i1≤k1−∆

y
(1)
i1

− · · · −
∑

id∈[kd−∆+1,kd]

y
(d)
id

+ (eβ − 1)
∑

id≤kd−∆

y
(d)
id

≤ |k1|2 + |k2|2 + · · ·+ |kd|2,∀(k1, . . . , kd) ∈ Zd.

Theorem 4.26. For the `2 cost function,

lim
max(ε,δ)→0

V ′LB
d∆2

β2

≥ 0.0177.

Proof. See Appendix C.12.
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Upper Bounds: the Uniform Noise Mechanism and the Discrete Laplacian Mechanism

Since (0, δ)-differential privacy implies (ε, δ)-differential privacy and we have shown that the

uniform noise mechanism defined in (4.28) satisfies (0, δ)-differential privacy, an upper bound

for V ∗ for the `1 cost function is

V ∗ ≤ V uniform
UB =

d∆

4δ
(4.31)

by Corollary 4.19.

In addition, (ε, 0)-differential privacy also implies (ε, δ)-differential privacy, and the dis-

crete Laplacian mechanism satisfies (ε, 0)-differential privacy. Consider the discrete Lapla-

cian mechanism in the multiple dimensional setting with probability mass function P defined

as

P(i1, i2, . . . , id) =

(
1− λ
1 + λ

)d
λ|i1|+|i2|+···+|id|,∀(i1, . . . , id) ∈ Zd,

where λ , e−
ε
∆ .

The corresponding cost achieved by the Laplacian mechanism for the `1 cost function is

V
Lap
UB =

∑
(i1,i2,...,id)∈Zd

(
1− λ
1 + λ

)d
λ|i1|+|i2|+···+|id|(|i1|+ |i2|+ · · ·+ |id|)

=
2dλ

1− λ2

=
2de−

ε
∆

1− e−2 ε
∆

= Θ(
d∆

ε
), (4.32)

as ε→ 0.

Similarly, for the `2 cost function, we have

V uniform
UB =

d∆2

12δ2
+
d

6
,

and

V
Lap
UB =

∑
(i1,i2,...,id)∈Zd

(
1− λ
1 + λ

)d
λ|i1|+|i2|+···+|id|(|i1|2 + |i2|2 + · · ·+ |id|2)

=
2dλ

(1− λ)2
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= Θ(
2d∆2

ε2
).

Comparison of Lower Bound and Upper Bounds

Compare the lower bound in Theorem 4.25 and the upper bounds (4.31) and (4.32), and we

conclude that for the `1 cost function, the multiplicative gap between the upper bound and

lower bound is upper bounded by a constant as (ε, δ)→ (0, 0). More precisely,

Corollary 4.27. For the `1 cost function, we have

V ′LB ≤ V ∗ ≤ min(V
uniform
UB , V

Lap
UB ),

and as (ε, δ)→ (0, 0),

lim
(ε,δ)→(0,0)

min(V
uniform
UB , V

Lap
UB )

V ′LB
≤ 1

log 9
8

≈ 8.49.

Similarly, for the `2 cost function, we have

Corollary 4.28. For the `2 cost function, we have

V ′LB ≤ V ∗ ≤ min(V
uniform
UB , V

Lap
UB ),

and as (ε, δ)→ (0, 0),

lim
(ε,δ)→(0,0)

min(V
uniform
UB , V

Lap
UB )

V ′LB
≤ 2

0.0177
≈ 113.
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CHAPTER 5

CONCLUSION

Differential privacy is a framework to quantify to what extent individual privacy in a statis-

tical database is preserved while releasing useful aggregate information about the database.

The purpose of this dissertation is to delve into fundamental limits of data privacy and derive

the optimal mechanisms to preserve differential privacy in the most basic problem settings,

as opposed to doing privacy for each and every application setting as in most works in the

literature. The main contributions of this dissertation can be summarized as follows.

• ε-differential privacy in the single dimensional setting :

Given the differential privacy constraint, we derive the optimal differentially private

mechanism for a single real-valued query function under a general utility-maximization

(or cost-minimization) framework. The class of noise probability distributions in the

optimal mechanism has staircase-shaped probability density functions which are sym-

metric (around the origin), monotonically decreasing, and geometrically decaying. The

staircase mechanism can be viewed as a geometric mixture of uniform probability dis-

tributions, providing a simple algorithmic description for the mechanism. Furthermore,

the staircase mechanism naturally generalizes to discrete query output settings as well

as more abstract settings. We show that adding query-output independent noise with

the staircase distribution is optimal among all randomized mechanisms (subject to a

mild technical condition) that preserve differential privacy.

We explicitly derive the optimal noise probability distributions with minimum expec-

tation of noise amplitude and power. Comparing the optimal performances with those

of the Laplacian mechanism, we show that in the high privacy regime, the Laplacian

mechanism is asymptotically optimal; in the low privacy regime, the staircase mecha-

nism significantly outperforms the Laplacian mechanism. We conclude that the gains

are more pronounced in the low privacy regime.

• ε-differential privacy in the multiple dimensional setting :

We extend the staircase mechanism from the single dimensional setting to the multi-

ple dimensional setting. We show that for histogram-like query functions, when the
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dimension of query output is two, the multiple dimensional staircase mechanism is

optimal for the `1 cost function. We explicitly derive the parameter of the optimal

two-dimensional staircase mechanism, and study the asymptotical performance of the

optimal mechanism in the high and low privacy regimes. Comparing the optimal per-

formances with those of the usual Laplacian mechanisms, we show that in the high

privacy regime (ε is small), the Laplacian mechanism is asymptotically optimal as

ε → 0; in the low privacy regime (ε is large), the optimal cost is Θ(e−
ε
3 ), while the

cost of the Laplacian mechanism is 2∆
ε

. We conclude that the gains of the staircase

mechanism are more pronounced in the low privacy regime.

• (ε, δ)-differential privacy :

We study the optimal mechanisms in (ε, δ)-differential privacy for integer-valued query

functions under a utility-maximization/cost-minimization framework. We show that

the (ε, δ)-differential privacy is a framework not much more general than the (ε, 0)-

differential privacy and (0, δ)-differential privacy in the context of `1 and `2 cost func-

tions, i.e., minimum expected noise magnitude and noise power. In the same context of

`1 and `2 cost functions, we show the near-optimality of the uniform noise mechanism

and the discrete Laplacian mechanism in the high privacy regime (as (ε, δ)→ (0, 0)).
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Theorem 2.3

We first give two lemmas on the properties of {Pt}t∈R which satisfies (2.7).

Lemma A.1. Given {Pt}t∈R satisfying (2.7), and given any scalar α ∈ R, consider the

family of noise probability measures {P(α)
t }t∈R defined by

P(α)
t , Pt+α,∀t ∈ R. (A.1)

Then {P(α)
t }t∈R also satisfies the differential privacy constraint, i.e., ∀|t1 − t2| ≤ ∆,

P(α)
t1 (S) ≤ eεP(α)

t2 (S + t1 − t2). (A.2)

Furthermore, {Pt}t∈R and {P(α)
t }t∈R have the same cost, i.e.,

sup
t∈R

∫
x∈R
L(x)Pt(dx) = sup

t∈R

∫
x∈R
L(x)P(α)

t (dx). (A.3)

Proof. Since by definition the family of probability measures {P(α)
t }t∈R is a shifted version

of {Pt}t∈R, (A.3) holds.

Next we show that {P(α)
t }t∈R satisfies (A.2). Given any t1, t2 such that |t1 − t2| ≤ ∆,

then for any measurable set S ⊂ R, we have

P(α)
t1 = Pt1+α(S)

≤ eεPt2+α(S + (t1 + α)− (t2 + α))

= eεPt2+α(S + t1 − t2)

= eεP(α)
t2 (S + t1 − t2).

This completes the proof.
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Next we show that given a collection of families of probability measures each of which

satisfies the differential privacy constraint (2.7), we can take a convex combination of them

to construct a new family of probability measures satisfying (2.7) and the new cost is not

worse. More precisely,

Lemma A.2. Given a collection of finite number of families of probability measures {P [i]
t }t∈R

(i ∈ {1, 2, 3, . . . , n}), such that for each i, {P [i]
t }t∈R satisfies (2.7) and

sup
t∈R

∫
x∈R
L(x)P [i]

t (dx) = Q,∀i,

for some real number Q, consider the family of probability measures {ν̃t}t∈R defined by

ν̃t ,
n∑
i=1

ciP [i]
t ,∀t ∈ R,

i.e., for any measurable set S ⊂ R,

ν̃t(S) =
n∑
i=1

ciP [i]
t (S),

where ci ≥ 0, and
∑n

i=1 ci = 1.

Then {ν̃t}t∈R also satisfies the differential privacy constraint (2.7), and

sup
t∈R

∫
x∈R
L(x)ν̃t(dx) ≤ Q.

Proof. First we show that {ν̃t}t∈R also satisfies the differential privacy constraint (2.7). In-

deed, ∀ |t1 − t2| ≤ ∆, ∀ measurable set S ⊂ R,

ν̃t1(S) =
n∑
i=1

ciP [i]
t1 (S)

≤
n∑
i=1

cie
εP [i]

t2 (S + t1 − t2)

= eεν̃t2(S + t1 − t2).

Next we show that the cost of {ν̃t}t∈R is no bigger than Q. Indeed, for any t ∈ R,∫
x∈R
L(x)ν̃t(dx) =

n∑
i=1

ci

∫
x∈R
L(x)ν̃

[i]
t (dx)
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≤
n∑
i=1

ciQ

= Q.

Therefore,

sup
t∈R

∫
x∈R
L(x)ν̃t(dx) ≤ Q.

Applying Lemma A.1 and Lemma A.2, we can prove the conjecture under the assumption

that the family of probability measures {Pt}t∈R is piecewise constant and periodic over t.

Proof of Theorem 2.3. We first prove that for any family of probability measures {Pt}t∈R ∈
KT,n, there exists a new family of probability measures {P̃t}t∈R ∈ KT,n such that P̃t = P̃ for

all t ∈ R, i.e., the added noise is independent of query output t, and

sup
t∈R

∫
x∈R
L(x)P̃t(dx) ≤ sup

t∈R

∫
x∈R
L(x)Pt(dx).

Indeed, consider the collection of probability measures {P(iT
n

)
t }t∈R for i ∈ {0, 1, 2, . . . , n−

1}, where {P(α)
t } is defined in (A.1). Due to Lemma A.1, for all i, {P(iT

n
)

t }t∈R satisfies the

differential privacy constraint (2.7), and the cost is the same as the cost of {Pt}t∈R.

Define

P̃t =
n−1∑
i=0

1

n
P(iT

n
)

t .

Then due to Lemma A.2, {P̃t}t∈R satisfies (2.7), and the cost of is not worse, i.e.,

sup
t∈R

∫
x∈R
L(x)P̃t(dx) ≤ sup

t∈R

∫
x∈R
L(x)Pt(dx).

Furthermore, since {Pt}t∈R ∈ KT,n, for any t ∈ R,

P̃t =
n−1∑
i=0

1

n
P(iT

n
)

t =
n−1∑
i=0

1

n
PiT

n
.

Hence, P̃t is independent of t.
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Therefore, among the collection of probability measures in ∪T>0 ∪n≥1 KT,n, to minimize

the cost we only need to consider the families of noise probability measures which are inde-

pendent of the query output t. Then due to Theorem 2.4, the staircase mechanism is optimal

among all query-output independent noise-adding mechanisms. This completes the proof of

Theorem 2.3.

A.2 Proof of Theorem 2.4

In this section, we give detailed and rigorous proof of Theorem 2.4.

A.2.1 Outline of Proof

The key idea of the proof is to use a sequence of probability distributions with piecewise

constant probability density functions to approximate any probability distribution satisfying

the differential privacy constraint (2.11). The proof consists of 8 steps in total, and in

each step we narrow down the set of probability distributions where the optimal probability

distribution should lie:

• Step 1 proves that we only need to consider symmetric probability distributions.

• Step 2 and Step 3 prove that we only need to consider probability distributions which

have symmetric and piecewise constant probability density functions.

• Step 4 proves that we only need to consider those symmetric and piecewise constant

probability density functions which are monotonically decreasing for x ≥ 0.

• Step 5 proves that the optimal probability density function should periodically decay.

• Step 6, Step 7, and Step 8 prove that the optimal probability density function over the

interval [0,∆) is a step function, and they conclude the proof of Theorem 2.4.

A.2.2 Step 1

Define

V ∗ , inf
P∈SP

∫
x∈R
L(x)P(dx).
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Our goal is to prove that V ∗ = inf
γ∈[0,1]

∫
x∈R L(x)Pγ(dx).

If V ∗ = +∞, then due to the definition of V ∗, we have

inf
γ∈[0,1]

∫
x∈R
L(x)Pγ(dx) ≥ V ∗ = +∞,

and thus infγ∈[0,1]

∫
x∈R L(x) = V ∗ = +∞. So we only need to consider the case V ∗ < +∞,

i.e., V ∗ is finite. Therefore, in the rest of the proof, we assume V ∗ is finite.

First, we prove that we only need to consider symmetric probability measures.

Lemma A.3. Given P ∈ SP, define a symmetric probability distribution Psym as

Psym(S) ,
P(S) + P(−S)

2
,∀ measurable set S ⊆ R, (A.4)

where the set −S , {−x | x ∈ S}. Then Psym ∈ SP, i.e., Psym satisfies the differential

privacy constraint (2.11), and∫
x∈R
L(x)Psym(dx) =

∫
x∈R
L(x)P(dx).

Proof. It is easy to verify that Psym is a valid probability distribution. Due to the definition

of Psym in (A.4), we have

Psym(S) =
P(S) + P(−S)

2
= Psym(−S),

for any measurable set S ⊆ R. Thus, Psym is a symmetric probability distribution.

Next, we show that Psym satisfies (2.11). Indeed, ∀ measurable set S ⊆ R and ∀|d| ≤ ∆,

Psym(S) =
P(S) + P(−S)

2

≤ eεP(S + d) + eεP(−S − d)

2
(A.5)

=
eεP(S + d) + eεP(−(S + d))

2

= eεPsym(S + d),

where in (A.5) we use the facts P(S) ≤ eεP(S + d) and P(−S) ≤ eεP(−S − d).

Lastly, since L(x) is symmetric,∫
x∈R
L(x)P(dx) =

∫
x∈R

L(x) + L(−x)

2
P(dx)
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=

∫
x∈R
L(x)Psym(dx).

Therefore, if we define

SPsym , {Psym|P ∈ SP},

due to Lemma A.3,

Lemma A.4.

V ∗ = inf
P∈SPsym

∫
x∈R
L(x)P(dx).

A.2.3 Step 2

Next we prove that for any probability distribution P satisfying differential privacy constraint

(2.11), the probability Pr(X = x) = 0,∀x ∈ R, and P([y, z]) 6= 0 for any y < z ∈ R.

Lemma A.5. ∀P ∈ SP ,∀x ∈ R, P({x}) = 0. And, for any y < z ∈ R, P([y, z]) 6= 0.

Proof. Given P ∈ SP , suppose P({x0}) = p0 > 0, for some x0 ∈ R. Then for any x ∈
[x0, x0 + ∆],

P({x}) ≥ e−ε,

due to (2.11).

So P({x}) is strictly lower bounded by a positive constant for an uncountable number

of x, and thus P([x0, x0 + ∆]) = +∞, which contradicts with the fact P is a probability

distribution.

Therefore, ∀P ∈ SP , ∀x ∈ R, P({x}) = 0.

Suppose P([y, z]) = 0 for some y < z ∈ R. Then from (2.11) we have for any |d| ≤ ∆,

P([y + d, z + d]) ≤ eεP([y, z]) = 0,

and thus P([y + d, z + d]) = 0. By induction, for any k ∈ Z, P([y + kd, z + kd]) = 0, which

implies that P((−∞,+∞)) = 0. Contradiction. So for any y < z ∈ R, P([y, z]) 6= 0.
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A.2.4 Step 3

In this subsection, we show that for any P ∈ SPsym with

V (P) ,
∫
x∈R
L(x)P(dx) < +∞,

we can use a sequence of probability measures {Pi ∈ SPsym}i≥1 with symmetric and piecewise

constant probability density functions to approximate P with limi→+∞ V (Pi) = V (P).

Lemma A.6. Given P ∈ SPsym with V (P) < +∞, any positive integer i ∈ N , define Pi
as the probability distribution with a symmetric and piecewise constant probability density

function fi(x) defined as

fi(x) =

ak ,
P([kD

i
,(k+1)D

i
)

D
i

x ∈ [kD
i
, (k + 1)D

i
) for k ∈ N

fi(−x) x < 0
.

Then Pi ∈ SPsym and

lim
i→+∞

V (Pi) = V (P).

Proof. First we prove that Pi ∈ SPsym, i.e., Pi is symmetric and satisfies the differential

privacy constraint (2.11).

By definition fi(x) is a symmetric and nonnegative function, and∫ +∞

−∞
fi(x)dx = 2

∫ +∞

0

fi(x)dx

= 2

∫
x∈[0,+∞)

P(dx)

= 2

∫
x∈(0,+∞)

P(dx) (A.6)

= 1, (A.7)

where in (A.6) we used the fact P({0}) = 0 due to Lemma A.5. In addition, due to Lemma

A.5, ak > 0,∀k ∈ N.

So fi(x) is a valid symmetric probability density function, and thus Pi is a valid symmetric

probability distribution.

Define the density sequence of Pi as the sequence {a0, a1, a2, . . . , an, . . . }. Since P satisfies
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(2.11), it is easy to see that

aj ≤ eεaj+k and aj+k ≤ eεaj,∀j ≥ 0, 0 ≤ k ≤ i.

Therefore, for any x, y such that |x− y| ≤ ∆, we have

fi(x) ≤ eεfi(y) and fi(y) ≤ eεfi(x),

which implies that Pi satisfies (2.11). Hence, Pi ∈ SPsym.

Next we show that

lim
i→+∞

V (Pi) = V (P).

Since L(x) satisfies Property 2.2, we can assume there exists a constant B > 0 such that

L(x+ 1) ≤ BL(x),∀x ≥ T.

Given δ > 0, since V (P) is finite, there exists integer T ∗ > T such that∫
x≥T ∗

L(x)P(dx) <
δ

B
.

For any integers i ≥ 1, N ≥ T ∗,∫
x∈[N,N+1)

L(x)Pi(dx) ≤ Pi([N,N + 1))L(N + 1)

= P([N,N + 1))L(N + 1)

≤
∫
x∈[N,N+1)

BL(x)P(dx).

Therefore, ∫
x∈[T ∗,+∞)

L(x)Pi(dx) ≤
∫
x∈[T ∗,+∞)

BL(x)P(dx)

≤ B
δ

B

= δ.

For x ∈ [0, T ∗), L(x) is a bounded function, and thus by the definition of Riemann-Stieltjes
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integral, we have

lim
i→∞

∫
x∈[0,T ∗)

L(x)Pi(dx) =

∫
x∈[0,T ∗)

L(x)P(dx).

So there exists a sufficiently large integer i∗ such that for all i ≥ i∗∣∣∣∣∫
x∈[0,T ∗)

L(x)Pi(dx)−
∫
x∈[0,T ∗)

L(x)P(dx)

∣∣∣∣ ≤ δ.

Hence, for all i ≥ i∗

|V (Pi)− V (P)|

=

∣∣∣∣ ∫
x∈R
L(x)Pi(dx)−

∫
x∈R
L(x)P(dx)

∣∣∣∣
= 2

∣∣∣∣ ∫
x∈[0,T ∗)

L(x)Pi(dx)−
∫
x∈[0,T ∗)

L(x)P(dx)

+

∫
x∈[T ∗,+∞)

L(x)Pi(dx)−
∫
x∈[T ∗,+∞)

L(x)P(dx)

∣∣∣∣
≤ 2

∣∣∣∣ ∫
x∈[0,T ∗)

L(x)Pi(dx)−
∫
x∈[0,T ∗)

L(x)P(dx)

∣∣∣∣
+2

∫
x∈[T ∗,+∞)

L(x)Pi(dx) + 2

∫
x∈[T ∗,+∞)

L(x)P(dx)

≤ 2(δ + δ +
δ

B
)

≤ (4 +
2

B
)δ.

Therefore,

lim
i→+∞

∫
x∈R
L(x)Pi(dx) =

∫
x∈R
L(x)P(dx).

Define SP i,sym , {Pi|P ∈ SPsym} for i ≥ 1, i.e., SP i,sym is the set of probability distri-

butions satisfying differential privacy constraint (2.11) and having symmetric and piecewise

constant (over intervals [k∆
i
, (k + 1)∆

i
) ∀k ∈ N ) probability density functions.

Due to Lemma A.6,
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Lemma A.7.

V ∗ = inf
P∈∪∞i=1SPi,sym

∫
x∈R
L(x)P(dx).

Therefore, to characterize V ∗, we only need to study probability distributions with sym-

metric and piecewise constant probability density functions.

A.2.5 Step 4

Next we show that indeed we only need to consider those probability distributions with

symmetric and piecewise constant probability density functions which are monotonically

decreasing when x ≥ 0.

Lemma A.8. Given Pa ∈ SP i,sym with a symmetric and piecewise constant probability

density function f(·), let {a0, a1, . . . , an, . . . } be the density sequence of f(·), i.e,

f(x) = ak, x ∈ [k
∆

i
, (k + 1)

∆

i
) ∀k ∈ N.

Then we can construct a new probability distribution Pb ∈ SP i,sym the probability density

function of which is monotonically decreasing when x ≥ 0, and∫
x∈R
L(x)Pb(dx) ≤

∫
x∈R
L(x)Pa(dx).

Proof. Since ak > 0, ∀k ∈ N, and

+∞∑
k=0

ak
∆

i
=

1

2
,

we have limk→+∞ ak = 0.

Given the density sequence {a0, a1, . . . , an, . . . }, construct a new monotonically decreasing

density sequence {b0, b1, . . . , bn, . . . } and a bijective mapping π : N→ N as follows

I0 = arg max
k∈N

ak, (A.8)

π(0) = min
n∈I0

n, i.e., the smallest element in I0,

b0 = aπ(0),

(A.9)

∀m ∈ N and m ≥ 1,
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Im = arg max
k∈N\{π(j)|j<m}

ak, (A.10)

π(m) = min
n∈Im

n, i.e., the smallest element in Im,

bm = aπ(m).

Since the sequence {ak} converges to 0, the maximum of {ak} always exists in (A.8) and

(A.10). Therefore, Im is well defined for all m ∈ N.

Note that since
∑∞

k=0 ak
∆
i

= 1
2

and the sequence {bk}k∈N is simply a permutation of

{ak}k∈N,
∑∞

k=1 bk
∆
i

= 1
2
.

Therefore, if we define a function g(·) as

g(x) =

bk x ∈ [kD
i
, (k + 1)D

i
) for k ∈ N

g(−x) x < 0

then g(·) is a valid symmetric probability density function, and∫
x∈R
L(x)g(x)dx ≤

∫
x∈R
L(x)f(x)dx.

Next, we prove that the probability distribution Pb with probability density function g(·)
satisfies the differential privacy constraint (2.11). Since {bk}k∈N is a monotonically decreasing

sequence, it is sufficient and necessary to prove that for all k ∈ N,

bk
bk+i

≤ eε.

To simplify notation, given k, we define

a∗(k) = min
k≤j≤k+i

ak,

i.e., a∗(k) denotes the smallest number of {ak, ak+1, . . . , ak+i}.
First, when k = 0, it is easy to prove that b0

bi
≤ eε. Indeed, recall that b0 = aπ(0) and

consider the i + 1 consecutive numbers {aπ(0), aπ(0)+1, . . . , aπ(0)+i} in the original sequence

{ak}k∈N. Then a∗(0) ≤ bi, since bi is the (i + 1)th largest number in the sequence {ak}k∈N.

Therefore,

b0

bi
=
aπ(0)

bi
≤

aπ(0)

a∗(0)
≤ eε.

For k = 1, b1 = aπ(1) and consider the i+1 consecutive numbers {aπ(1), aπ(1)+1, . . . , aπ(1)+i}.
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If π(0) /∈ [π(1), π(1) + i], then a∗(π(1)) ≤ bi+1, and thus

b1

bi+1

=
aπ(1)

b1+i

≤
aπ(1)

a∗(π(1))
≤ eε.

If π(0) ∈ [π(1), π(1) + i], then a∗(π(0)) ≤ bi+1 and
aπ(0)

a∗(π(0))
≤ eε. Therefore,

b1

bi+1

≤ b0

b1+i

≤ b0

a∗(π(0))
≤ eε.

Hence, bk
bk+i
≤ eε holds for k = 1.

In general, given k, we prove bk
bk+i
≤ eε as follows. First, if πj /∈ [π(k), π(k) + i],∀j < k,

then a∗π(k) ≤ bk+i, and hence

bk
bi+k

=
aπ(k)

bi+k
≤

aπ(k)

a∗(π(k))
≤ eε.

If there exists j < k and πj ∈ [π(k) + 1, π(k) + i], we use Algorithm 2 to compute a number

j∗ such that j∗ < k and πj /∈ [π(j∗) + 1, π(j∗) + i],∀j < k.

Algorithm 2

j∗ ← k
while there exists some j < k and πj ∈ [π(j∗) + 1, π(j∗) + i] do

j∗ ← j
end while
Output j∗

It is easy to show that the loop in Algorithm 2 will terminate after at most k steps.

After finding j∗, we have j∗ < k, and a∗(π(j∗)) ≤ bk+i. Therefore

bk
bi+k

≤
aπ(j∗)

bi+k
≤

aπ(j∗)

a∗(π(j∗))
≤ eε.

So bk
bk+i
≤ eε holds for all k ∈ N. Therefore, Pb ∈ SP i,sym.

This completes the proof of Lemma A.8.

Therefore, if we define

SP i,md , {P|P ∈ SP i,sym, and the density sequence of P is monotonically decreasing},

then due to Lemma A.8,
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Lemma A.9.

V ∗ = inf
P∈∪∞i=1SPi,md

∫
x∈R
L(x)P(dx).

A.2.6 Step 5

Next we show that among all symmetric and piecewise constant probability density functions,

we only need to consider those which are periodically decaying.

More precisely, given positive integer i,

SP i,pd , { P | P ∈ SP i,md, and P has density sequence {a0, a1, . . . , an, . . . , }

satisfying
ak
ak+i

= eε,∀k ∈ N},

then

Lemma A.10.

V ∗ = inf
P∈∪∞i=1SPi,pd

∫
x∈R
L(x)P(dx).

Proof. Due to Lemma A.9, we only need to consider probability distributions with symmetric

and piecewise constant probability density functions which are monotonically decreasing for

x ≥ 0.

We first show that given Pa ∈ SP i,md with density sequence {a0, a1, . . . , an, . . . , }, if
a0

ai
< eε, then we can construct a probability distributions Pb ∈ SP i,md with density sequence

{b0, b1, . . . , bn, . . . , } such that b0
bi

= eε and

V (Pa) ≥ V (Pb).

Define a new sequence {b0, b1, . . . , bn, . . . } by scaling up a0 and scaling down {a1, a2, . . . }.
More precisely, let δ = i

2D(( i
2D
−a0)e−ε

a0
ai

+a0)
− 1 > 0, and set

b0 = a0(1 + δ),

bk = ak(1− δ′),∀ k ≥ 1,

where δ′ , a0δ
i

2D
−a0

> 0, and we have chosen δ such that b0
bi

= a0

ak

i
2D
−a0

i
2D(1+δ)

−a0
= eε.

It is easy to see the sequence {b0, b1, . . . , bn, . . . , } corresponds to a valid probability
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density function and it also satisfies the differential privacy constraint (2.11), i.e.,

bk
bk+i

≤ eε,∀k ≥ 0.

Let Pb be the probability distribution with {b0, b1, . . . , bn, . . . , } as the density sequence

of its probability density function. Next we show V (Pb) ≤ V (Pa).
It is easy to compute V (Pa), which is

V (Pa) = 2
∆

i

(
a0

∫ ∆
i

0

L(x)dx+
∞∑
k=1

ak

∫ (k+1) ∆
i

k∆
i

L(x)dx

)
.

Similarly, we can compute V (Pb) by

V (Pb) = 2
∆

i

(
b0

∫ ∆
i

0

L(x)dx+
∞∑
k=1

bk

∫ (k+1) ∆
i

k∆
i

L(x)dx

)

= V (Pa) + 2
∆

i

(
a0δ

∫ D
i

0

L(x)dx− δ′
∞∑
k=1

ak

∫ (k+1)D
i

kD
i

L(x)dx

)

= V (Pa) + 2
∆

i

a0δ
i

2∆
− a0

(
∞∑
k=1

ak

∫ ∆
i

0

L(x)dx−
∞∑
k=1

ak

∫ (k+1) ∆
i

k∆
i

L(x)dx

)

= V (Pa) + 2
∆

i

a0δ
i

2∆
− a0

∞∑
k=1

ak

(∫ ∆
i

0

L(x)dx−
∫ (k+1) ∆

i

k∆
i

L(x)dx

)
≤ V (Pa),

where in the last step we used the fact that
(∫ ∆

i

0
L(x)dx−

∫ (k+1) ∆
i

k∆
i

L(x)dx
)
≤ 0, since L(·)

is a monotonically increasing function for x ≥ 0.

Therefore, for given i ∈ N, we only need to consider P ∈ SP i,md with density sequence

{a0, a1, . . . , an, . . . } satisfying a0

ai
= eε.

Next, we argue that among all probability distributions P ∈ SP i,md with density se-

quence {a0, a1, . . . , an, . . . , } satisfying a0

ai
= eε, we only need to consider those probability

distributions with density sequence also satisfying a1

ai+1
= eε.

Given Pa ∈ SP i,md with density sequence {a0, a1, . . . , an, . . . } satisfying a0

ai
= eε and

a1

ai+1
< eε, we can construct a new probability distribution Pb ∈ SP i,md with density sequence

{b0, b1, . . . , bn, . . . } satisfying

b0

bi
= eε,
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b1

bi+1

= eε,

and V (Pa) ≥ V (Pb).
First, it is easy to see a1 is strictly less than a0, since if a0 = a1, then a1

ai+1
= a0

ai+1
≥ a0

ai
= eε.

Then we construct a new density sequence by increasing a1 and decreasing ai+1. More

precisely, we define a new sequence {b0, b1, . . . , bn, . . . } as

bk = ak,∀k 6= 1, k 6= i+ 1,

b1 = a1 + δ,

bi+1 = ai+1 − δ,

where δ = eεai+1−a1

1+eε
and thus b1

bi+1
= eε.

It is easy to verify that {b0, b1, . . . , bn, . . . } is a valid probability density sequence and the

corresponding probability distribution Pb satisfies the differential privacy constraint (2.11).

Moreover, V (Pa) ≥ V (Pb). Therefore, we only need to consider P ∈ SP i,md with density

sequences {a0, a1, . . . , an, . . . } satisfying a0

ai
= eε and a1

ai+1
= eε.

Using the same argument, we can show that we only need to consider P ∈ SP i,md with

density sequences {a0, a1, . . . , an, . . . } satisfying

ak
ai+k

= eε,∀k ≥ 0.

Therefore,

V ∗ = inf
P∈∪∞i=1SPi,pd

∫
x∈R
L(x)P(dx).

Due to Lemma A.10, we only need to consider probability distribution with symmetric,

monotonically decreasing (for x ≥ 0), and periodically decaying, piecewise constant probabil-

ity density function. Because of the properties of symmetry and periodic decay, for this class

of probability distributions, the probability density function over R is completely determined

by the probability density function over the interval [0,∆).

Next, we study what the optimal probability density function should be over the interval

[0,∆). It turns out that the optimal probability density function over the interval [0,∆) is

a step function. We use the following three steps to prove this result.
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A.2.7 Step 6

Lemma A.11. Consider a probability distribution Pa ∈ SP i,pd (i ≥ 2) with density sequence

{a0, a1, . . . , an, . . . }, and a0

ai−1
< eε. Then there exists a probability distribution Pb ∈ SP i,pd

with density sequence {b0, b1, . . . , bn, . . . }such that b0
bi−1

= eε, and

V (Pb) ≤ V (Pa).

Proof. For each 0 ≤ k ≤ (i− 1), define

wk ,
+∞∑
j=0

e−jε
∫ (j+ k+1

i
)∆

(j+ k
i
)∆

L(x)dx. (A.11)

Since L(cdot) satisfies Property 2.2 and V ∗ <∞, it is easy to show that the sum of the

series in (A.11) exists and is finite, and thus wk is well defined for all 0 ≤ k ≤ (i − 1). In

addition, it is easy to see

w0 ≤ w1 ≤ w2 ≤ · · · ≤ wi−1,

since L(x) is a monotonically increasing function when x ≥ 0.

Then

V (Pa) =

∫
x∈R
L(x)Pa(dx) = 2

i−1∑
k=0

wkak.

Since a0

ai−1
< eε, we can scale a0 up and scale {a1, . . . , ai−1} down to derive a new valid

probability density function with smaller cost. More precisely, define a new probability

measure Pb ∈ SP i,pd with density sequence {b0, b1, . . . , bn, . . . } via

b0 , γa0,

bk , γ′ak,∀1 ≤ k ≤ i− 1,

for some γ > 1 and γ′ < 1 such that

b0

bi−1

= eε.

To make {b0, b1, . . . , bn, . . . } be a valid density sequence, i.e., to make the integral of the
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corresponding probability density function over R be 1, we have

i−1∑
k=0

bk =
i−1∑
k=0

ak =
1− e−ε

2

i

∆
.

Define t , 1−e−ε
2

i
∆

, then we have two linear equations on γ and γ′:

γa0 = eεγ′ (A.12)

γa0 + γ′(t− a0) = t. (A.13)

From (A.12) and (A.13), we can easily get

γ =
eεtai−1

a0(t− a0 + eεai−1)
> 1

γ′ =
t

t− a0 + eεai−1

< 1.

Then we can verify that the V (Pa) ≥ V (Pa). Indeed,

V (Pa)− V (Pb)

=

∫
x∈R
L(x)Pa(dx)−

∫
x∈R
L(x)Pb(dx)

= 2
i−1∑
k=0

wkak − 2
i−1∑
k=0

wkbk

= 2

(
(1− γ)w0a0 + (1− γ′)

i−1∑
k=1

wkak

)

≥ 2

(
(1− γ)w0a0 + (1− γ′)

i−1∑
k=1

w0ak

)
= 2 ((1− γ)w0a0 + (1− γ′)w0(t− a0))

= 2w0

(
a0 −

ai−1e
εt

t− a0 + eεai−1

+ (t− a0)
−a0 + eεai−1

t− a0 + eεai−1

)
= 0.

This completes the proof.

Therefore, due to Lemma A.11, for all i ≥ 2, we only need to consider probability

distributions P ∈ SP i,pd with density sequence {a0, a1, . . . , an, . . . } satisfying a0

ai−1
= eε.
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More precisely, define

SP i,fr = {P ∈ SP i,pd|P has density sequence {a0, a1, . . . , an, . . . } satisfying
a0

ai−1

= eε}.

Then due to Lemma A.11,

Lemma A.12.

V ∗ = inf
P∈∪∞i=3SPi,fr

∫
x∈R
L(x)P(dx).

A.2.8 Step 7

Next, we argue that for each probability distribution P ∈ SP i,fr (i ≥ 3) with density sequence

{a0, a1, . . . , an, . . . }, we can assume that there exists an integer 1 ≤ k ≤ (i− 2), such that

aj = a0,∀0 ≤ j < k, (A.14)

aj = ai−1,∀k < j < i. (A.15)

More precisely,

Lemma A.13. Consider a probability distribution Pa ∈ SP i,fr (i ≥ 3) with density sequence

{a0, a1, . . . , an, . . . }. Then there exists a probability distribution Pb ∈ SP i,fr with density

sequence {b0, b1, . . . , bn, . . . } such that there exists an integer 1 ≤ k ≤ (i− 2) with

bj = a0,∀ 0 ≤ j < k, (A.16)

bj = ai−1,∀ k < j < i, (A.17)

and

V (Pb) ≤ V (Pa). (A.18)

Proof. If there exists an integer 1 ≤ k ≤ (i− 2) such that

aj = a0,∀ 0 ≤ j < k,

aj = ai−1,∀ k < j < i,

then we can set Pb = Pa.
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Otherwise, let k1 be the smallest integer in {0, 1, 2, . . . , i− 1} such that

ak1 6= a0,

and let k2 be the biggest integer in {0, 1, 2, . . . , i− 1} such that

ak2 6= ai−1.

It is easy to see that k1 6= k2. Then we can increase ak1 and decrease ak2 simultaneously

by the same amount to derive a new probability distribution Pb ∈ SP i,fr with smaller cost.

Indeed, if

a0 − ak1 ≤ ak2 − ai−1,

then consider a probability distribution Pb ∈ SP i,fr with density sequence {b0, b1, . . . , bi−1, . . . }
defined as

bj = a0,∀0 ≤ j ≤ k1,

bj = aj,∀k1 < j ≤ k2 − 1,

bk2 = ak2 − (a0 − ak1),

bj = aj,∀k2 < j ≤ i− 1.

We can verify that V (Pa) ≥ V (Pb) via

V (Pa)− V (Pb)

=

∫
x∈R
L(x)Pa(dx)−

∫
x∈R
L(x)Pb(dx)

= 2(wk1bk1 + wk2bk2)− 2(wk1ak1 + wk2ak2)

= 2wk1(a0 − ak1) + 2wk2(ak2 − (a0 − ak1)− ak2)

= 2(a0 − ak1)(wk1 − wk2)

≤ 0,

where wi is defined in (A.11).

If a0 − ak1 ≥ ak2 − ai−1, then accordingly we can construct Pb ∈ SP i,fr by setting

bj = a0,∀0 ≤ j < k1,

bk1 = ak1 + (ak2 − ai−1),
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bj = aj,∀k1 < j ≤ k2 − 1,

bj = ai−1, ∀k2 ≤ j ≤ i− 1.

And similarly, it is easy to verify that V (Pa) ≥ V (Pb).
Therefore, continue in this way, and finally we will obtain a probability distribution

Pb ∈ SP i,fr with density sequence {b0, b1, . . . , bn, . . . } such that (A.16), (A.17) and (A.18)

hold.

This completes the proof.

Define

SP i,step = {P ∈ SP i,fr | P has density sequence {a0, a1, . . . , an, . . . }

satisfying(A.16) and (A.17) for some 1 ≤ k ≤ (i− 2)}.

Then due to Lemma A.13,

Lemma A.14.

V ∗ = inf
P∈∪∞i=3SPi,step

∫
x∈R
L(x)P(dx).

A.2.9 Step 8

Proof of Theorem 2.4. Since {Pγ|γ ∈ [0, 1]} ⊆ SP , we have

V ∗ = inf
P∈SP

∫
x∈R
L(x)P(dx) ≤ inf

γ∈[0,1]

∫
x∈R
L(x)Pγ(dx).

We prove the reverse direction in the following.

We first prove that for any P ∈ SP i,step ( i ≥ 3), there exists γ ∈ [0, 1] such that∫
x∈R
L(x)Pγ(dx) ≤

∫
x∈R
L(x)P(dx).

Consider the density sequence {a0, a1, . . . , an, . . . } of P . Since P ∈ SP i,step, there exists

an integer 0 ≤ k ≤ i− 2 such that

aj = a0,∀0 ≤ j < k,

aj = a0e
−ε, ∀k < j ≤ i− 1.

88



Let

γ′ ,
1−e−ε

2∆
− a0e

−ε

a0(1− e−ε)
∈ [0, 1].

Then a(γ′) = a0.

It is easy to verify that

k
∆

i
≤ γ′∆ ≤ (k + 1)

∆

i
.

The probability density functions of P and Pγ′ are the same when x ∈ [0, k
i
∆)∪[k+1

i
∆,∆).

Because they periodically decay, the integral of probability density functions over [0,∆) is
1−e−ε

2
. Hence, we have

ak
∆

i
= a0(γ′ − k

i
)∆ + e−εa0(

k + 1

i
− γ′)∆.

Define β , i(γ′ − k
i
) ∈ [0, 1]. Then

ak = βa0 + (1− β)e−εa0.

Define

w
(1)
k ,

+∞∑
j=0

e−jε
∫ (j+γ′)∆

(j+ k
i
)∆

L(x)dx, (A.19)

w
(2)
k ,

+∞∑
j=0

e−jε
∫ (j+ k+1

i
)∆

(j+γ′)∆

L(x)dx, . (A.20)

Note that wk = w
(1)
k + w

(2)
k . Since L(x) is a monotonically increasing function when x ≥ 0,

we have

w
(2)
k

w
(1)
k

≥
(j + k+1

i
)∆− (j + γ′)∆

(j + γ′)∆− (j + k
i
)∆

=
k+1
i
− γ′

γ′ − k
i

.

Therefore, ∫
x∈R
L(x)P(dx)−

∫
x∈R
L(x)Pγ′(dx)

=2wkak − 2
(
w

(1)
k a0 + w

(2)
k a0e

−ε
)
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=2
(
w

(1)
k + w

(2)
k

)
ak − 2

(
w

(1)
k a0 + w

(2)
k a0e

−ε
)

=2(ak − a0e
−ε)w

(2)
k − 2(a0 − ak)w(1)

k .

Since

ak − a0e
−ε

a0 − ak
=

β(a0 − a0e
−ε)

(1− β)(a0 − a0e−ε)

=
β

1− β

=
γ′ − k

i
k+1
i
− γ′

≥ w
(1)
k

w
(2)
k

,

we have ∫
x∈R
L(x)P(dx)−

∫
x∈R
L(x)Pγ′(dx)

=2(ak − a0e
−ε)w

(2)
k − 2(a0 − ak)w(1)

k

≥0.

Therefore,

V ∗ = inf
P∈∪∞i=3SPi,step

∫
x∈R
L(x)P(dx)

≥ inf
γ∈[0,1]

∫
x∈R
L(x)Pγ(dx).

We conclude

V ∗ = inf
P∈SP

∫
x∈R
L(x)P(dx) = inf

γ∈[0,1]

∫
x∈R
L(x)Pγ(dx) = inf

γ∈[0,1]

∫
x∈R
L(x)fγ(x)dx.

This completes the proof of Theorem 2.4.
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A.3 Proof of Theorem 2.5

Proof of Theorem 2.5. Recall b , e−ε, and L(x) = |x|. We can compute V (Pγ) via

V (Pγ) =

∫
x∈R
|x|fγ(x)dx

= 2

∫ +∞

0

xfγ(x)dx

= 2
+∞∑
k=0

(∫ γ∆

0

(x+ k∆)a(γ)e−kεdx+

∫ ∆

γ∆

(x+ k∆)a(γ)e−εe−kεdx

)

= 2∆2a(γ)
+∞∑
k=0

(
e−kε

(k + γ)2 − k2

2
+ e−(k+1)ε (k + 1)2 − (k + γ)2

2

)

= 2∆2a(γ)
+∞∑
k=0

(
e−kε

γ2 + 2kγ

2
+ e−(k+1)ε2k + 1− 2kγ − γ2

2

)

= 2∆2a(γ)
+∞∑
k=0

(
(b+ (1− b)γ)ke−kε +

b+ (1− b)γ2

2
e−kε

)
= 2∆2a(γ)

(
(b+ (1− b)γ)

b

(1− b)2
+
b+ (1− b)γ2

2

1

1− b

)
(A.21)

= 2∆2 1− b
2∆(b+ (1− b)γ)

(
(b+ (1− b)γ)

b

(1− b)2
+
b+ (1− b)γ2

2

1

1− b

)
= ∆

(
b

1− b
+

1

2

b+ (1− b)γ2

b+ (1− b)γ

)
,

where in (A.21) we use the formulas

+∞∑
k=1

bk =
1

1− b
, (A.22)

+∞∑
k=1

kbk =
b

(1− b)2
. (A.23)

Note that the first term b
1−b is independent of γ. Define

g(γ) ,
b+ (1− b)γ2

b+ (1− b)γ
,

and thus to minimize V (Pγ) over γ ∈ [0, 1], we only need to minimize g(γ) over γ ∈ [0, 1].

Since γ ∈ [0, 1], g(γ) ≤ 1. Also note that g(0) = g(1) = 1. So the optimal γ∗ which

minimizes g(γ) lies in (0, 1).
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Compute the derivative of g(γ) via

g′(γ) =
2γ(1− b)(b+ (1− b)γ)− (b+ (1− b)γ2)(1− b)

(b+ (1− b)γ)2

= (1− b)(1− b)γ2 + 2bγ − b
(b+ (1− b)γ)2

.

Set g′(γ∗) = 0 and we get

γ∗ =

√
b− b

1− b

=
e−

1
2
ε − e−ε

1− e−ε

=
1

1 + e
ε
2

.

Therefore,

V (Pγ∗) = ∆

(
b

1− b
+

1

2

b+ (1− b)γ∗2

b+ (1− b)γ∗

)
= ∆

e
ε
2

eε − 1
.

Due to Theorem 2.4, the minimum expectation of noise amplitude is V (Pγ∗) = ∆ e
ε
2

eε−1
.

A.4 Proof of Theorem 2.7

Proof of Theorem 2.7. Recall b , e−ε. Then we compute V (Pγ) for the cost function L(x) =

x2 via

V (Pγ)

=

∫
x∈R

x2fγ(x)dx

= 2

∫ +∞

0

x2fγ(x)dx

= 2
+∞∑
k=0

(∫ γ∆

0

(x+ k∆)2a(γ)e−kεdx+

∫ ∆

γ∆

(x+ k∆)2a(γ)e−εe−kεdx

)
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= 2∆3a(γ)
+∞∑
k=0

(
e−kε

(k + γ)3 − k3

3
+ e−(k+1)ε (k + 1)3 − (k + γ)3

3

)

= 2∆3a(γ)
+∞∑
k=0

(
e−kε

γ3 + 3kγ2 + 3k2γ

3
+ e−(k+1)ε3k

2 + 3k + 1− 3k2γ − 3kγ2 − γ3

3

)

= 2∆3a(γ)
+∞∑
k=0

(
(
1− γ3

3
b+

γ3

3
)e−kε + (γ2 + (1− γ2)b)ke−kε + (γ + (1− γ)b)k2e−kε

)
= 2∆3a(γ)

(
(
1− γ3

3
b+

γ3

3
)

1

1− b
+ (γ2 + (1− γ2)b)

b

(1− b)2
+ (γ + (1− γ)b)

b2 + b

(1− b)3

)
(A.24)

= 2∆3 1− b
2∆(b+ (1− b)γ)(

(
1− γ3

3
b+

γ3

3
)

1

1− b
+ (γ2 + (1− γ2)b)

b

(1− b)2
+ (γ + (1− γ)b)

b2 + b

(1− b)3

)
= ∆2

(
b2 + b

(1− b)2
+
b+ (1− b)γ2

b+ (1− b)γ
b

1− b
+

1

3

b+ (1− b)γ3

b+ (1− b)γ

)
, (A.25)

where in (A.24) we use formulas (A.22), (A.23) and

+∞∑
k=1

k2bk =
(b2 + b)

(1− b)3
. (A.26)

Note that the first term b2+b
(1−b)2 is independent of γ. Define

h(γ) ,
b+ (1− b)γ2

b+ (1− b)γ
b

1− b
+

1

3

b+ (1− b)γ3

b+ (1− b)γ

=

(1−b)γ3

3
+ bγ2 + b2

1−b + b
3

b+ (1− b)γ
,

and thus to minimize V (Pγ) over γ ∈ [0, 1], we only need to minimize h(γ) over γ ∈ [0, 1].

Since γ ∈ [0, 1], h(γ) ≤ b
1−b + 1

3
. Also note that h(0) = h(1) = b

1−b + 1
3
. So the optimal

γ∗ which minimizes h(γ) lies in (0, 1).

Compute the derivative of h(γ) via

h′(γ) =
((1− b)γ2 + 2bγ)(b+ (1− b)γ)− (1−b

3
γ3 + bγ2 + b2

1−b + b
3
)(1− b)

(b+ (1− b)γ)2

=
2
3
(1− b)2γ3 + 2b(1− b)γ2 + 2b2γ − 2b2+b

3

(b+ (1− b)γ)2

.
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Set h′(γ∗) = 0 and we get

2

3
(1− b)2γ∗3 + 2b(1− b)γ∗2 + 2b2γ∗ − 2b2 + b

3
= 0. (A.27)

Therefore, the optimal γ∗ is the real-valued root of the cubic equation (A.27), which is

γ∗ = − b

1− b
+

(b− 2b2 + 2b4 − b5)1/3

21/3(1− b)2
. (A.28)

We plot γ∗ as a function of b in Figure 2.5, and we can see γ∗ → 1
2

as ε→ 0, and γ∗ → 0

as ε→ +∞. This also holds in the case L(x) = |x|.
Plug (A.28) into (A.25), and we get the minimum noise power

V (Pγ∗) = ∆2

(
b2 + b

(1− b)2
+
b+ (1− b)γ∗2

b+ (1− b)γ∗
b

1− b
+

1

3

b+ (1− b)γ∗3

b+ (1− b)γ∗

)
= ∆2 2−2/3b2/3(1 + b)2/3 + b

(1− b)2
.

Due to Theorem 2.4, the minimum expectation of noise power is

V (Pγ∗) = ∆2 2−2/3b2/3(1 + b)2/3 + b

(1− b)2

.

A.5 Proof of Theorem 2.9

Proof of Theorem 2.9. Let n = m+ 1, and define

ci ,
+∞∑
k=0

bkki, (A.29)

for nonnegative integer i.

First we compute V (Pγ) via

V (Pγ) = 2
+∞∑
k=0

(∫ γ∆

0

(x+ k∆)ma(γ)e−kεdx+

∫ ∆

γ∆

(x+ k∆)ma(γ)e−(k+1)εdx

)
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= 2a(γ)∆m+1

+∞∑
k=0

(
bk

(k + γ)m+1 − km+1

m+ 1
+ bk+1 (k + 1)m+1 − (k + γ)m+1

m+ 1

)

= 2∆na(γ)
+∞∑
k=0

(
bk
∑n

i=1

(
n
i

)
γikn−i

n
+ bbk

∑n
i=1

(
n
i

)
(1− γi)kn−i

n

)

= 2∆na(γ)

(
n∑
i=1

(
n
i

)
γicn−i

n
+ b

n∑
i=1

(
n
i

)
(1− γi)cn−i

n

)

= 2∆na(γ)
n∑
i=1

(
n
i

)
cn−i(γ

i(1− b) + b)

n

=
2∆n(1− b)

2∆n

∑n
i=1

(
n
i

)
cn−i(γ

i(1− b) + b)

γ(1− b) + b
.

Let hi(γ) , γi(1−b)+b
γ(1−b)+b for i ≥ 2. Since hi(0) = hi(1) = 1 and hi(γ) < 1 for γ ∈ (0, 1), hi(γ)

achieves the minimum value in the open interval (0, 1).

Therefore, if we define h(γ) ,
∑n
i=1 (ni)cn−i(γi(1−b)+b)

γ(1−b)+b , the optimal γ∗ ∈ [0, 1], which mini-

mizes V (Pγ), should satisfy

h′(γ∗) = 0,

where h′(·) denotes the first order derivative of h(·).
It is straightforward to derive the expression for h′(·):

h′(γ) =
(
∑n

i=1

(
n
i

)
cn−iiγ

i−1(1− b))(γ(1− b) + b)− (1− b)
∑n

i=1

(
n
i

)
cn−i(γ

i(1− b) + b)

(γ(1− b) + b)2

=

∑n
i=1

(
n
i

)
cn−i(i− 1)γi(1− b)2 +

∑n
i=1

(
n
i

)
cn−iiγ

i−1(1− b)b−
∑n

i=1

(
n
i

)
cn−ib(1− b)

(γ(1− b) + b)2
.

(A.30)

Therefore, γ∗ should make the numerator of (A.30) be zero, i.e., γ∗ satisfies

n∑
i=1

(
n

i

)
cn−i(i− 1)γi(1− b)2 +

n∑
i=1

(
n

i

)
cn−iiγ

i−1(1− b)b−
n∑
i=1

(
n

i

)
cn−ib(1− b) = 0.

Since

n∑
i=1

(
n

i

)
cn−i(i− 1)γi(1− b)2 +

n∑
i=1

(
n

i

)
cn−iiγ

i−1(1− b)b−
n∑
i=1

(
n

i

)
cn−ib(1− b)

=
n∑
i=1

(
n

i

)
cn−i(i− 1)γi(1− b)2 +

n−1∑
i=0

(
n

i+ 1

)
cn−(i+1)(i+ 1)γi(1− b)b
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−
n∑
i=1

(
n

i

)
cn−ib(1− b)

=c0(n− 1)γn(1− b)2 +
n−1∑
i=1

((
n

i

)
cn−i(i− 1)(1− b)2 +

(
n

i+ 1

)
cn−(i+1)(i+ 1)(1− b)b

)
γi

+ ncn−1(1− b)b−
n∑
i=1

(
n

i

)
cn−ib(1− b)

=c0(n− 1)γn(1− b)2 +
n−1∑
i=1

((
n

i

)
cn−i(i− 1)(1− b)2 +

(
n

i+ 1

)
cn−(i+1)(i+ 1)(1− b)b

)
γi

−
n∑
i=2

(
n

i

)
cn−ib(1− b),

γ∗ satisfies

c0(n− 1)γ∗n(1− b)2 +
n−1∑
i=1

((
n

i

)
cn−i(i− 1)(1− b)2 +

(
n

i+ 1

)
cn−(i+1)(i+ 1)(1− b)b

)
γ∗i

−
n∑
i=2

(
n

i

)
cn−ib(1− b) = 0. (A.31)

We can derive the asymptotic properties of γ∗ from (A.31). Before deriving the properties

of γ∗, we first study the asymptotic properties of ci, which are functions of b.

There are closed-form formulas for ci (i=0,1,2,3):

c0 =
+∞∑
k=0

bk =
1

1− b
,

c1 =
+∞∑
k=0

bkk =
b

(1− b)2
,

c2 =
+∞∑
k=0

bkk2 =
b2 + b

(1− b)3
,

c3 =
+∞∑
k=0

bkk3 =
b3 + 4b2 + b

(1− b)4
.

In general, for i ≥ 1,

ci+1 =
+∞∑
k=0

bkki+1 =
+∞∑
k=1

bkki+1 = b+
+∞∑
k=1

bk+1(k + 1)i+1,

96



bci+1 =
+∞∑
k=0

bk+1ki+1 =
+∞∑
k=1

bk+1ki+1.

Therefore,

ci+1 − bci+1 = b+
+∞∑
k=1

bk+1((k + 1)i+1 − ki+1)

= b+
+∞∑
k=1

bk+1

i∑
j=0

(
i+ 1

j

)
kj

= b+ b
i∑

j=0

(
i+ 1

j

) +∞∑
k=1

kjbk

= b+ b(
b

1− b
+

i∑
j=1

(
i+ 1

j

)
cj)

=
b

1− b
+ b

i∑
j=1

(
i+ 1

j

)
cj,

and thus

ci+1 =
b

(1− b)2
+

b

1− b

i∑
j=1

(
i+ 1

j

)
cj. (A.32)

From (A.32), by induction we can easily prove that

• as b→ 0, ci → 0,∀i ≥ 1;

• as b→ 1, ∀i ≥ 0, ci → +∞, ci = Ω( i!
(1−b)i+1 ) and

lim
b→1

ci+1

ci
(1− b) = i+ 1.

As b→ 0, since ci → 0 for i ≥ 1 and c0 = 1, the last two terms of (A.31) go to zero, and

thus from (A.31) we can see that γ∗ goes to zero as well.

As b→ 1, since ci = Ω( 1
(1−b)i+1 ) and γ∗ is bounded by 1, the first term of (A.31) goes to

zero, and the dominated terms in (A.31) are(
n

2

)
cn−22(1− b)bγ∗ −

(
n

2

)
cn−2b(1− b) = 0.

Thus, in the limit we have γ∗ = 1
2
. Therefore, as b→ 1, γ∗ → 1

2
.
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This completes the proof.

A.6 Proof of Theorem 2.12 and Theorem 2.13

In this section, we prove Theorem 2.12 and Theorem 2.13, which give the optimal noise-

adding mechanisms in the discrete setting.

A.6.1 Outline of Proof

The proof technique is very similar to the proof in the continuous settings in Appendix A.2.

The proof consists of 5 steps in total, and in each step we narrow down the set of probability

distributions where the optimal probability distribution should lie:

• Step 1 proves that we only need to consider probability mass functions which are

monotonically increasing for i ≤ 0 and monotonically decreasing for i ≥ 0.

• Step 2 proves that we only need to consider symmetric probability mass functions.

• Step 3 proves that we only need to consider symmetric probability mass functions

which have periodic and geometric decay for i ≥ 0, and this proves Theorem 2.12.

• Step 4 and Step 5 prove that the optimal probability mass function over the interval

[0,∆) is a discrete step function, and they conclude the proof of Theorem 2.13.

A.6.2 Step 1

Recall SP denotes the set of all probability mass functions which satisfy the ε-differential

privacy constraint (2.16). Define

V ∗ , inf
P∈SP

+∞∑
i=−∞

L(i)P(i).

First we prove that we only need to consider probability mass functions which are mono-

tonically increasing for i ≤ 0 and monotonically decreasing for i ≥ 0.

Define

SPmono , {P ∈ SP|P(i) ≤ P(j),P(m) ≥ P(n),∀i ≤ j ≤ 0, 0 ≤ m ≤ n}.
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Lemma A.15.

V ∗ = inf
P∈SPmono

+∞∑
i=−∞

L(i)P(i).

Proof. We will prove that given a probability mass function Pa ∈ SP , we can construct a

new probability mass function Pb ∈ SPmono such that

+∞∑
i=−∞

L(i)Pa(i) ≥
+∞∑
i=−∞

L(i)Pb(i).

Given Pa ∈ SP , consider the sequence sa = {Pa(0),Pa(1),Pa(−1),Pa(2),Pa(−2), . . . }.
Use the same argument in Lemma A.5 and we can show Pa(i) > 0,∀ i ∈ Z. Let the sequence

sb = {b0, b1, b−1, b2, b−2, . . . } be a permutation of the sequence sa in descending order. Since∑+∞
i=−∞Pa(i) = 1, limi→−∞Pa(i) = limi→+∞Pa(i) = 0, and thus sb is well defined. Let π be

the corresponding permutation mapping, i.e., π : Z→ Z, and

bi = Pa(π(i)).

Since L(·) is a symmetric function and monotonically decreasing for i ≥ 0, we have

L(0) ≤ L(1) ≤ L(−1) ≤ L(2) ≤ L(−2) ≤ · · ·

≤ L(i) ≤ L(−i) ≤ L(i+ 1) ≤ L(−(i+ 1)) ≤ · · · .

Therefore, if we define a probability mass function Pb with

Pb(i) = bi,∀i ∈ Z,

then

+∞∑
i=−∞

L(i)Pa(i) ≥
+∞∑
i=−∞

L(i)Pb(i).

Next, we only need to prove Pb ∈ SPmono, i.e., we need to show that Pb satisfies the

differential privacy constraint (2.16).

Due to the way how we construct the sequence sb, we have

b0 ≥ b1 ≥ b2 ≥ b3 ≥ · · · ,

b0 ≥ b−1 ≥ b−2 ≥ b−3 ≥ · · · .
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Therefore, it is both sufficient and necessary to prove that

bi
bi+∆

≤ eε,∀i ≥ 0,

bi
bi−∆

≤ eε,∀i ≤ 0.

Since Pa ∈ SP , ∀ i ∈ {π(0)−∆, π(0)−∆ + 1, π(0)−∆ + 2, . . . , π(0) + ∆},

Pa(π(0))

Pa(i)
≤ eε.

Therefore, in the sequence sb there exist at least 2∆ elements which are no smaller than

b0e
−ε. Since b−∆ and b∆ are the 2∆th and (2∆ − 1)th largest elements in the sequence sb

other than b0, we have b0
b−∆
≤ eε and b0

b∆
≤ eε.

In general, given i ∈ Z, we can use Algorithm 3 to find at least 2∆ elements in the

sequence sb which are no bigger than bi and no smaller than bie
−ε.

More precisely, given i ∈ Z, let j∗R and j∗L be the output of Algorithm 3. Note that

since the while loops in Algorithm 3 can take only at most 2(|i| + 1) steps, the algorithm

will always terminate. For all integers j ∈ [π(j∗L) − ∆, π(j∗L) − 1], Pa(j) is no bigger than

bi and is no smaller than Pa(j∗L)e−ε; and for all integers j ∈ [π(j∗R) + 1, π(j∗R) + ∆], Pa(j)
is no bigger than bi and is no smaller than Pa(j∗R)e−ε. Since Pa(j∗R),Pa(j∗L) ≥ bi, for all

j ∈ [π(j∗L) − ∆, π(j∗L) − 1] ∪ [π(j∗R) + 1, π(j∗R) + ∆], Pa(j) is no bigger than bi and is no

smaller than bie
−ε. Therefore, there exist at least 2∆ elements in the sequence sb which are

no bigger than bi and no smaller than bie
−ε.

If i ≤ 0, then bi−∆ is the 2∆th largest element in the sequence sb which is no bigger than

bi and no smaller than bie
−ε; and if i ≥ 0, then bi+∆ is the (2∆− 1)th largest element in the

sequence sb which is no bigger than bi and no smaller than bie
−ε. Therefore, we have

bi
bi+∆

≤ eε,∀i ≥ 0,

bi
bi−∆

≤ eε,∀i ≤ 0.

This completes the proof of Lemma A.15.
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Algorithm 3

j∗R ← i
while there exists some j which appears before i in the sequence {0, 1,−1, 2,−2, . . . } and
π(j) ∈ [π(j∗R) + 1, π(j∗R) + ∆] do

j∗R ← j
end while

j∗L ← i
while there exists some j which appears before i in the sequence {0, 1,−1, 2,−2, . . . } and
π(j) ∈ [π(j∗L)−∆, π(j∗L)− 1] do

j∗L ← j
end while

Output j∗R and j∗L.

A.6.3 Step 2

Next we prove that we only need to consider symmetric probability mass functions which

are monotonically decreasing when i ≥ 0.

Define

SPsym , {P ∈ SPmono| P(i) = P(−i), ∀ i ∈ Z}.

Lemma A.16.

V ∗ = inf
P∈SPsym

+∞∑
i=−∞

L(i)P(i).

Proof. The proof is essentially the same as the proof of Lemma A.3.

Given Pa ∈ SPmono, define a new probability mass function Pb with

Pb(i) ,
Pa(i) + Pa(−i)

2
,∀i ∈ Z.

It is easy to see Pb is a valid probability mass function and symmetric. Since the cost

function L(·) is symmetric,

+∞∑
i=−∞

L(i)Pa(i) =
+∞∑
i=−∞

L(i)Pb(i).

Next we show that Pb also satisfies the differential privacy constraint (2.16). For any
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i ∈ Z and |d| ≤ ∆, since Pa(i) ≤ eεPa(i+ d) and Pa(−i) ≤ eεPa(−i− d), we have

Pb(i) =
Pa(i) + Pa(−i)

2

≤ eεPa(i+ d) + eεPa(−i− d)

2

= eεPb(i+ d).

Therefore, Pb satisfies (2.16).

Finally, for any 0 ≤ i ≤ j,

Pb(i) =
Pa(i) + Pa(−i)

2

≥ Pa(j) + Pa(−j)
2

= Pb(j).

So Pb ∈ SPmono, and thus Pb ∈ SPsym. We conclude

V ∗ = inf
P∈SPsym

+∞∑
i=−∞

L(i)P(i).

A.6.4 Step 3

Next we show that among all symmetric and monotonically decreasing (for i ≥ 0) probability

mass functions, we only need to consider those which are periodically and geometrically

decaying.

More precisely, define

SPpd , {P ∈ SPsym|
P(i)

P(i+ ∆)
= eε,∀ i ∈ N}.

Then

Lemma A.17.

V ∗ = inf
P∈SPpd

V (P).
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Proof. Due to Lemma A.16, we only need to consider probability mass functions which are

symmetric and monotonically decreasing for i ≥ 0.

We first show that given Pa ∈ SPsym, if Pa0
Pa∆

< eε, then we can construct a probability

mass function Pb ∈ SPsym such that Pb0Pb∆ = eε and

V (Pa) ≥ V (Pb).

Since Pa is symmetric,

V (Pa) = L(0)Pa(0) + 2
+∞∑
i=1

L(i)Pa(i).

Suppose Pa0
Pa∆

< eε, then define a new symmetric probability mass function Pb with

Pb(0) , (1 + δ)Pa(0),

Pb(i) , (1− δ′)Pa(i),∀i ∈ Z\{0},

where

δ =
eεPa(∆)
Pa(0)

− 1

1 + eε Pa(∆)
1−Pa(0)

> 0,

δ′ =
eεPa(∆)
Pa(0)

− 1

1
Pa(0)

+ eεPa(∆)
Pa(0)

− 1
> 0,

so that Pb(0)
Pb(∆)

= eε.

It is easy to see Pb ∈ SPsym, and

V (Pb)− V (Pa)

=δL(0)Pa(0)− 2δ′
+∞∑
i=1

L(i)Pa(i)

≤δL(0)Pa(0)− 2δ′
+∞∑
i=1

L(0)Pa(i)

≤δL(0)Pa(0)− δ′L(0)(1− Pa(0))

=0.

Therefore, we only need to consider P ∈ SPsym satisfying P(0)
P(∆)

= eε.
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By using the same argument as in the proof of Lemma A.10, one can conclude that we

only need to consider P ∈ SPsym satisfying

P(i)

P(i+ ∆)
= eε,∀i ∈ N. (A.33)

Therefore, V ∗ = infP∈SPpd
V (P).

Proof of Theorem 2.12. In the case that ∆ = 1, due to Lemma A.17, the symmetry property

and (A.33) completely characterize the optimal noise probability mass function, which is the

geometric mechanism.

A.6.5 Step 4

Due to Lemma A.17, the optimal probability mass function P is completely characterized by

P(0),P(1), . . . ,P(∆−1). Next we derive the properties of optimal probability mass function

in the domain {0, 1, 2, . . . ,∆− 1}.
Since Lemma A.17 solves the case ∆ = 1, in the remaining of this section, we assume

∆ ≥ 2.

Define

SPstepλ , { P ∈ SPpd | ∃ k ∈ {0, 1, . . . ,∆− 2},P(i) = P(0),∀i ∈ {0, 1, . . . , k},

P(j) = λP(0),∀j ∈ {k + 1, k + 2, . . . ,∆− 1}}.

Lemma A.18.

V ∗ = inf
P∈∪λ∈[e−ε,1]SPstepλ

V (P).

Proof. If ∆ = 2, then for any P ∈ SPpd, we can set k = 0, and P ∈ SPstep P(∆−1)
P(0)

. Therefore,

Lemma A.18 holds for ∆ = 2.

Assume ∆ ≥ 3. First, we prove that we only need to consider probability mass function

P ∈ SPpd such that there exists k ∈ {1, 2, . . . ,∆− 2} with

P(i) = P(0), ∀i ∈ {0, 1, . . . , k − 1} (A.34)

P(j) = P(∆− 1),∀i ∈ {k + 1, k + 2, . . . ,∆− 1}. (A.35)
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More precisely, let Pa ∈ SPpd, we can construct a probability mass function Pb ∈ SPpd

such that there exists k satisfying (A.34) and (A.35), and V (Pb) ≥ V (Pa).
The proof technique is very similar to proof of Lemma A.13. Suppose there does not

exists such k for Pa, then let k1 be the smallest integer in {1, 2, . . . ,∆− 1} such that

Pa(k1) 6= Pa(0),

and let k2 be the biggest integer in {0, 1, . . . ,∆− 2} such that

Pa(k2) 6= Pa(∆− 1).

It is easy to see that k1 < k2, and k1 6= 0. Then we can increase Pa(k1) and decrease Pa(k2)

simultaneously by the same amount to derive a new probability mass function Pb ∈ SPpd

with smaller cost. Indeed, if

Pa(0)− Pa(k1) ≤ Pa(k2)− Pa(∆− 1),

then consider a probability mass function Pb ∈ SPpd with

Pb(i) = Pa(0),∀0 ≤ i ≤ k1,

Pb(i) = Pa(i),∀k1 < i < k2,

Pb(k2) = Pa(k2)− (Pa(0)− Pa(k1)),

Pb(i) = Pa(i),∀k2 < i ≤ ∆− 1.

Define

w0 , L(0) + 2
∞∑
k=1

L(k∆)e−kε,

wi , 2
∞∑
k=0

L(i+ k∆)e−kε,∀i ∈ {1, 2, . . . ,∆− 1}.

Note that since L(·) is a monotonically decreasing function when i ≥ 0, we have w0 ≤ w1 ≤
· · · ≤ w∆−1.

Then we can verify that V (Pb) ≤ V (Pa) via

V (Pb)− V (Pa)
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=
∆−1∑
i=0

Pb(i)wi −
∆−1∑
i=0

Pa(i)wi

= (Pa(0)− Pa(k1))(wk1 − wk2)

≤ 0.

If

Pa(0)− Pa(k1) ≥ Pa(k2)− Pa(∆− 1),

then we can define Pb ∈ SPpd by setting

Pb(i) = Pa(0),∀0 ≤ i < k1,

Pb(k1) = Pa(k1) + (Pa(k2)− Pa(∆− 1)),

Pb(i) = Pa(i),∀k1 < i < k2,

Pb(i) = Pa(∆− 1),∀k2 ≤ i ≤ ∆− 1.

And similarly, we have

V (Pb)− V (Pa) = (Pa(k2)− Pa(∆− 1))(wk1 − wk2) ≤ 0.

Therefore, continue in this way, and finally we will obtain a probability mass function

Pb ∈ SPpd such that there exists k to satisfy (A.34) and (A.35) and V (Pb) ≤ V (Pa).
From the above argument, we can see that in the optimal solution P∗ ∈ SPpd, the

probability mass function can only take at most three distinct values for all i ∈ {0, 1, . . . ,∆−
1}, which are P∗(0),P∗(k), and P∗(∆− 1). Next we show that indeed either P∗(k) = P∗(0)

and P∗(k) = P∗(∆− 1), and this will complete the proof of Lemma A.18.

The optimal probability mass function P ∈ SPpd can be specified by four parameters

P(0), λ ∈ [e−ε, 1], k ∈ {1, 2, . . . ,∆ − 2}, and P(k). We will show that when k and λ are

fixed, to minimize the cost, we have either P(k) = P(0) or P(k) = P(∆− 1) = λP(0).

Since
∑+∞

i=−∞P(i) = 1,

2
kP(0) + P(k) + (∆− k − 1)λP(0)

1− b
− P(0) = 1,

and thus P(k) = (1+P(0))(1−b)−2P(0)k−2λP(0)(∆−k−1)
2

.
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The cost for P is

V (P)

= P(0)
k−1∑
i=0

wi + P(∆− 1)
∆−1∑
i=k+1

wi + P(k)wk

= P(0)
k−1∑
i=0

wi + λP(0)
∆−1∑
i=k+1

wi + (
(1 + P(0))(1− b)− 2P(0)k − 2λP(0)(∆− k − 1)

2
)wk,

which is a linear function of the parameter P(0).

Since P(k) ≥ λP(0) and P(k) ≤ P(0), we have

1 = 2
kP(0) + P(k) + (∆− k − 1)λP(0)

1− b
− P(0)

≤ 2
kP(0) + P(0) + (∆− k − 1)λP(0)

1− b
− P(0),

1 = 2
kP(0) + P(k) + (∆− k − 1)λP(0)

1− b
− P(0)

≥ 2
kP(0) + λP(0) + (∆− k − 1)λP(0)

1− b
− P(0),

and thus the constraints on P(0) are

1− b
2k + 2 + 2λ(∆− k − 1)− 1 + b

≤ P(0) ≤ 1− b
2k + 2λ(∆− k)− 1 + b

. (A.36)

Since V (P) is a linear function of P(0), to minimize the cost V (P), either P(0) =
1−b

2k+2+2λ(∆−k−1)−1+b
or P(0) = 1−b

2k+2λ(∆−k)−1+b
, i.e., P(0) should take one of the two extreme

points of (A.36). To get these two extreme points, we have either P(k) = P(0) or P(k) =

λP(0) = P(∆− 1).

Therefore, in the optimal probability mass function P ∈ SPpd, there exists k ≤ ∆ − 2

such that

P(i) = P(0),∀i ∈ {0, 1, . . . , k}

P(i) = P(∆− 1),∀i ∈ {k + 1, k + 2, . . . ,∆− 1}.

This completes the proof of Lemma A.18.
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A.6.6 Step 5

In the last step, we prove that although λ ∈ [e−ε, 1], in the optimal probability mass function,

λ is either e−ε or 1, and this will complete the proof of Theorem 2.13.

Proof. For fixed k ∈ {0, 1, . . . ,∆− 2}, consider P ∈ SPpd with

P(i) = P(0), ∀i ∈ {0, 1, . . . , k},

P(i) = λP(0),∀i ∈ {k + 1, k + 2, . . . ,∆− 1}.

Since
∑+∞

i=−∞P(i) = 1,

2
(k + 1)P(0) + (∆− k − 1)λP(0)

1− b
− P(0) = 1,

and thus

P(0) =
1− b

2(k + 1) + 2(∆− k − 1)λ− 1 + b
.

Hence, P is specified by only one parameter λ.

The cost of P is

V (P) =
∆−1∑
i=0

P(i)wi

= P(0)
k∑
i=0

wi + λP(0)
∆−1∑
k+1

wi

=
(1− b)(

∑k
i=0wi + λ

∑∆−1
i=k+1wi)

2(k + 1) + 2(∆− k − 1)λ− 1 + b

= (1− b)(C1 +
C2

2(k + 1) + 2(∆− k − 1)λ− 1 + b
),

where C1 and C2 are constant terms independent of λ. Therefore, to minimize V (P) over

λ ∈ [e−ε, 1], λ should take the extreme points, either e−ε or 1, depending on whether C2 is

negative or positive.

When λ = 1, then the probability mass function is uniquely determined, which is P ∈
SPpd with

P(i) =
1− b

2∆− 1 + b
,∀i ∈ {0, 1, . . . ,∆− 1},

108



which is exactly Pr defined in (2.17) with r = ∆.

When λ = e−ε, the probability mass function is exactly Pr with r = k + 1.

Therefore, we conclude that

V ∗ = min
{r∈N|1≤r≤∆}

+∞∑
i=−∞

L(i)Pr(i).
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Theorem 3.1

In this section, we give detailed and rigorous proof of Theorem 3.1.

B.1.1 Outline of Proof

The key idea of the proof is to use a sequence of probability distributions with piecewise

constant probability density functions to approximate any probability distribution satisfying

the differential privacy constraint (3.6). The proof consists of 4 steps in total, and in each

step we narrow down the set of probability distributions where the optimal probability

distribution should lie:

• Step 1 proves that we only need to consider probability distributions which have sym-

metric and piecewise constant probability density functions.

• Step 2 proves that we only need to consider those symmetric and piecewise constant

probability density functions which are monotonically decreasing.

• Step 3 proves that the optimal probability density function should periodically decay.

• Step 4 proves that the optimal probability density function is staircase-shaped in the

multiple dimensional setting, and it concludes the proof of Theorem 3.1.

B.1.2 Step 1

Given P ∈ SP , define

V (P) ,
∫ ∫

. . .

∫
Rd
L(x)P(dx1dx2 . . . dxd).
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Define

V ∗ , inf
P∈SP

V (P).

Our goal is to prove that V ∗ = inf
γ∈[0,1]

∫ ∫
. . .
∫
Rd L(x)fγ(x)dx1dx2 . . . dxd.

If V ∗ = +∞, then due to the definition of V ∗, we have

inf
γ∈[0,1]

∫ ∫
. . .

∫
Rd
L(x)fγ(x)dx1dx2 . . . dxd ≥ V ∗ = +∞,

and thus infγ∈[0,1]

∫ ∫
. . .
∫
Rd L(x)fγ(x)dx1dx2 . . . dxd = V ∗ = +∞. So we only need to

consider the case V ∗ < +∞, i.e., V ∗ is finite. Therefore, in the rest of the proof, we assume

V ∗ is finite.

First we show that given any probability measure P ∈ SP , we can use a sequence

of probability measures with multiple dimensionally piecewise constant probability density

functions to approximate P .

Given i ∈ N and k ∈ N, define

Ai(k) = {x ∈ Rd|k∆

i
≤ ‖x‖1 < (k + 1)

∆

i
} ⊂ Rd.

It is easy to calculate the volumn of Ai(k), which is

Vol(Ai(k)) =
2d

d!

(
(k + 1)d − kd

) ∆d

id
.

.

Lemma B.1. Given P ∈ SP with V (P) < +∞, any positive integer i ∈ N, define Pi as the

probability distribution with probability density function fi(x) defined as

fi(x) = ai(k) ,
P(Ai(k))

Vol(Ai(k))
x ∈ Ai(k) for k ∈ N. (B.1)

Then Pi ∈ SP and

lim
i→+∞

V (Pi) = V (P).

Before proving Lemma B.1, we prove an auxiliary lemma which shows that for probability

mass function over Z2 satisfying the ε-differential privacy constraint, we can construct a new

probability mass function by averaging the old probability mass function over each `1-ball

and the new probability mass function still satisfies the ε-differential privacy constraint.
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Lemma B.2. For any given probability mass function P defined over the set Z2 satisfying

that

P(i1, j1) ≤ eεP(i2, j2),∀|i1 − i2|+ |j1 − j2| ≤ ∆, (B.2)

define the probability mass function P̃ via

P̃(i, j) =

P(0, 0) (i, j) = (0, 0)

p|i|+|j| (i, j) 6= (0, 0)

where pk ,
∑

(i′,j′)∈Z2:|i′|+|j′|=k P(i′,j′)

4k
,∀k ≥ 1.

Then P̃ is also a probability mass function satisfying the differential privacy constraint,

i.e.,

P̃(i1, j1) ≤ eεP̃(i2, j2),∀|i1 − i2|+ |j1 − j2| ≤ ∆. (B.3)

Proof. Due to the way we define P̃ , we have∑
(i,j)∈Z2

P̃(i, j) =
∑

(i,j)∈Z2

P(i, j) = 1,

and thus P̃ is a valid probability mass function defined over Z2.

Next we prove that P̃ satisfies (B.3). To simplify notation, define p0 , P(0, 0). Then we

only need to prove that for any k1, k2 ∈ N such that |k1 − k2| ≤ ∆, we have

pk1 ≤ eεpk2 .

Due to the symmetry property, without loss of generality, we can assume k1 < k2.

The easiest case is k1 = 0. When k1 = 0, we have k2 ≤ ∆ and

P(0, 0) ≤ eεP(i, j),∀|i|+ |j| = k2. (B.4)

The number of distinct pairs (i, j) satisfying |i| + |j| = k is 4k for k ≥ 1. Sum up all

inequalities in (B.4), and we get

4k2P(0, 0) ≤ eε
∑

(i,j)∈Z2:|i|+|j|=k2

P(i, j)

⇔P(0, 0) ≤ eε
∑

(i,j)∈Z2:|i|+|j|=k2
P(i, j)

4k2
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⇔p0 ≤ eεpk2 .

For general 0 < k1 < k2, let ∆′ , k2 − k1 ≤ ∆. Define Bk via

Bk , {(i, j) ∈ Z2||i|+ |j| = k},∀k ∈ N.

Then the differential privacy constraint (B.2) implies that

P(i1, j1) ≤ eεP(i2, j2), ∀(i1, j1) ∈ Bk1 , (i2, j2) ∈ Bk2 , |i1 − i2|+ |j1 − j2| = ∆′. (B.5)

The set of points in Bk forms a rectangle, which has 4 corner points and 4(k− 1) interior

points on the edges. For each corner point in Bk1 , which appears in the left side of (B.5),

there are (2∆′ + 1) points in Bk2 close to it with an `1 distance of ∆′. And for each interior

point in Bk1 , there are (∆′+ 1) points in Bk2 close to it with an `1 distance of ∆′. Therefore,

there are in total 4(2∆′ + 1) + 4(k1 − 1)(∆′ + 1) distinct inequalities in (B.5).

If we can find certain nonnegative coefficients such that multiplying each inequality in

(B.5) by these nonnegative coefficients and summing them up gives us∑
(i′,j′)∈Z2:|i′|+|j′|=k1

P(i′, j′)

4k1

≤ eε
∑

(i′,j′)∈Z2:|i′|+|j′|=k2
P(i′, j′)

4k2

,

then (B.3) holds. Therefore, our goal is to find the “right” coefficients associated with each

inequality in (B.5). We formulate it as a matrix filling-in problem in which we need to choose

nonnegative coefficients for certain entries in a matrix such that the sum of each row is k1+∆′

k1
,

and the sum of each column is 1.

More precisely, label the 4k1 points in Bk1 by {I1, I2, I3, . . . , I4k1}, where we label the

topmost point by 1 and sequentially label other points clockwise. Similarly, we label the

4k2 points in Bk2 by {O1, O2, O3, . . . , O4k2}, where we label the topmost point by 1 and

sequentially label other points clockwise.

Consider the following 4k1 by 4k2 matrix M , where each row corresponds to the point in

Bk1 and each column corresponds to the point in Bk2 , and the entry Mij in the ith row and

jth column is the coefficient corresponds to inequality involved with the points Ii and Oj. If

there is no inequality associated with the points Ii and Oj, then Mij = 0.
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In the case k1 = 2 and ∆′ = 3, the zeros/nonzeros pattern of M has the following form:

x x x 0 0 0 0 0 0 0 0 0 0 0 x x

0 x x x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 x x x x x 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x x x 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x x x x x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 x x x 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x x x x x 0

0 0 0 0 0 0 0 0 0 0 0 0 0 x x x


,

where x denotes an entry which can take any nonnegative coefficient.

For general k1 and k2, the pattern of M is that the first, (k1 + 1)th, (2k1 + 1)th and

(3k1 +1)th rows can have 2∆′+1 nonzero entries, and all other rows can have ∆′+1 nonzero

entries.

We want to show that∑
(i′,j′)∈Z2:|i′|+|j′|=k1

P(i′, j′)

4k1

≤ eε
∑

(i′,j′)∈Z2:|i′|+|j′|=k2
P(i′, j′)

4k2

,

or equivalently,

(1 +
∆′

k1

)
∑

(i′,j′)∈Z2:|i′|+|j′|=k1

P(i′, j′) ≤ eε
∑

(i′,j′)∈Z2:|i′|+|j′|=k2

P(i′, j′).

Therefore, our goal is to find nonnegative coefficients to substitute each x in the matrix

such that the sum of each column is 1 and the sum of each column is (1 + ∆′

k1
). We will give

explicit formulas on how to choose the coefficients.

The case k1 = 1 is trivial. Indeed, one can set all diagonal entries to be 1, and set all

other nonzero entries to be 1
2
. Therefore, we can assume k1 > 1.

Consider two different cases: k1 ≤ ∆′ and k1 ≥ ∆′ + 1.

We first consider the case k1 ≤ ∆′. Due to the periodic patterns in M , we only need to

consider rows from 1 to k1 + 1. Set all entries to be zero except that we set

M11 = M22 = · · · = Mk1k1 = 1,

M2,∆′+2 = M3,∆′+3 = · · · = Mk1+1,k1+∆′+1 = 1

M1,j =
∆′

2k1(∆′ − k1 + 1)
, j ∈ [k1 + 1,∆′ + 1] ∪ [4k1 −∆′ + 1, 4k1]
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Mk1+1,j =
∆′

2k1(∆′ − k1 + 1)
, j ∈ [k1 + 1,∆′ + 1] ∪ [2k1 + 1 + ∆′, k1 + 1 + 2∆′]

Mi,j =
1− ∆′

k1(∆′−k1+1)

k1 − 1
.

It is straightforward to verify that the above matrix M satisfies the properties that the

sum of each column is 1 and the sum of each row is (1 + ∆′

k1
). Therefore, we have

pk1 ≤ eεpk2 ,∀0 < k1 < k2, k1 ≤ k2 − k1 ≤ ∆.

Next we solve the case k1 ≥ ∆′ + 1. Again due to the periodic patterns in M , we only

need to consider the nonzero entries in rows from 1 to k1+1. We use the following procedures

to construct M :

1. For the first row, set M11 = 1 and set all other 2∆′ nonzero entries to be 1
2k1

.

2. For the second row, M22 is uniquely determined to be 1 − 1
2k1

. Set the next ∆′ − 1

nonzero entries in the second row to be 1
k1

, i.e., M2j = 1
k1

for j ∈ [3,∆′ + 1]. The last

nonzero entry M2,∆′+2 is uniquely determined to be

(1 +
∆′

k1

)− (1− 1

2k1

)− ∆′ − 1

k1

=
3

2k1

.

3. For the third row, the first nonzero entry M33 is uniquely determined to be 1− 1
2k1
− 1
k1

=

1− 3
2k1

. Set the next ∆′ − 1 nonzero entries to be 1
k1

, i.e., M3j = 1
k1

for j ∈ [4,∆′ + 2].

The last nonzero entry M3,∆′+3 is uniquely determined to be

(1 +
∆′

k1

)− (1− 3

2k1

)− ∆′ − 1

k1

=
5

2k1

.

4. In general, for the ith row (i ∈ [2, k1 − 1]), the first nonzero entry Mii is set to be

Mii = 1− 2i−3
2k1

, and the next ∆′ − 1 nonzero entries are 1
k1

, and the last nonzero entry

Mi,i+∆′ = 2i−1
2k1

.

5. For (k1 + 1)th row, by symmetry, we set Mk1+1,k1+1 = 1 and set other 2∆′ nonzero

entries to be 1
2k1

.

6. The nonzero entries in the k1th row are uniquely determined. Indeed, we have

Mk1,k1 = 1− 2k1 − 3

2k1

,
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Mk1,k1+∆′ = 1− 1

2k1

,

Mk1,k1+j =
1

k1

, j ∈ [2,∆′ − 1].

It is straightforward to verify that each entry in M is nonnegative and M satisfies the

properties that the sum of each column is 1 and the sum of each row is (1 + ∆′

k1
). Therefore,

we have

pk1 ≤ eεpk2 ,∀0 < k1 < k2, k1 ≥ ∆′ + 1 = k2 − k1 + 1.

Therefore, for all k1, k2 ∈ N such that |k2 − k1| ≤ ∆, we have

pk1 ≤ eεpk2 .

This completes the proof of Lemma B.2.

Proof of Lemma B.1. First we prove that Pi ∈ SP , i.e., Pi satisfies the differential privacy

constraint (3.6).

By the definition of fi(x), fi(x) is a nonnegative function, and∫ ∫
. . .

∫
Rd
fi(x)dx1dx2 . . . dxd

=
+∞∑
k=0

ai(k)Vol(Ai(k))

=
+∞∑
k=0

P(Ai(k))

=P(Rd) = 1.

So Pi is a valid probability distribution.

Next we show that fi(x) satisfies the differential privacy constraint. For fixed i, on the

x1 − x2 plane, we can use the lines x2 = x1 + k
i
∆ and x2 = −x1 + k

i
∆ for all k ∈ Z to

divide each Ai(k) into distinct squares with the same size (each Ai(k) will be divided into

8k + 4 squares). By taking the average of the probability density function over each square,

we reduce the probability density function to a discrete probability mass function over Z2

satisfying ε-differential privacy constraint. Then apply Lemma B.2, and we have

ai(k1) ≤ eεai(k2),∀k1, k2 ∈ N with |k1 − k2| ≤ i.
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Given x,y ∈ Rd such that ‖x− y‖1 ≤ ∆, let k1, k2 be the integers such that

x ∈ Ai(k1),

y ∈ Ai(k2).

Then |k1 − k2| ≤ i. Therefore,

fi(x) ≤ eεfi(y),

which implies that the probability distribution Pi satisfies the differential privacy constraint

(3.6).

Therefore, for any integer i ≥ 1, Pi ∈ SP .

Next we show that

lim
i→+∞

V (Pi) = V (P).

To simplify notation, we use dx to denote dx1dx2 . . . dxd.

Given δ > 0, since V (P) is finite, there exists T ∗ = m∆ > 1 for some m ∈ N such that∫ ∫
. . .

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx) <
δ

2
.

For each Ai(k) we have∫ ∫
. . .

∫
Ai(k)

L(x)Pi(dx) =

∫ ∫
. . .

∫
Ai(k)

‖x‖1Pi(dx)

≤ Pi(Ai(k))(k + 1)
∆

i

= P(Ai(k))(k + 1)
∆

i

≤ 2P(Ai(k))k
∆

i

≤ 2

∫ ∫
. . .

∫
Ai(k)

L(x)P(dx).

Therefore,∫ ∫
. . .

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)Pi(dx) ≤ 2

∫ ∫
. . .

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx)

≤ 2
δ

2
= δ.
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L(x) is a bounded function when ‖x‖1 ≤ T ∗, and thus by the definition of Riemann-Stieltjes

integral, we have

lim
i→∞

∫ ∫
. . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx) =

∫ ∫
. . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx).

So there exists a sufficiently large integer i∗ such that for all i ≥ i∗∣∣∣∣∫ ∫ . . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx)−
∫ ∫

. . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx)

∣∣∣∣ ≤ δ.

Hence, for all i ≥ i∗

|V (Pi)− V (P)|

=

∣∣∣∣∫
Rd
L(x)Pi(dx)−

∫
Rd
L(x)P(dx)

∣∣∣∣
= |
∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx)−
∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx)

+

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)Pi(dx)−
∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx)|

≤
∣∣∣∣∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx)−
∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx)

∣∣∣∣
+

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)Pi(dx) +

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx)

≤ (δ + δ +
δ

2
)

≤ 5

2
δ.

Therefore,

lim
i→+∞

V (Pi) = V (P).

Define SP i,sym , {Pi|P ∈ SP} for i ≥ 1, i.e., SP i,sym is the set of probability distri-

butions satisfying differential privacy constraint (3.6) and having symmetric and piecewise

constant (over Ai(k) ∀k ∈ N) probability density functions.

Due to Lemma B.1,
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Lemma B.3.

V ∗ = inf
P∈∪∞i=1SPi,sym

V (P).

Therefore, to characterize V ∗, we only need to study probability distributions with sym-

metric and piecewise constant probability density functions.

B.1.3 Step 2

Given P ∈ Psym, we call {ai(0), ai(1), ai(2), . . . } the density sequence of Pi ∈ SP i,sym, where

ai(k) is defined in (B.1) ∀k ∈ N.

Next we show that indeed we only need to consider those probability distributions with

symmetric and piecewise constant probability density functions the density sequences of

which are monotonically decreasing.

Define

SP i,md , {P|P ∈ SP i,sym, and the density sequence of P is monotonically decreasing}.

Then

Lemma B.4.

V ∗ = inf
P∈∪∞i=1SPi,md

V (P).

Proof. We first show that among SP i,sym, to minimize the cost we only need to consider

these probability distributions with density sequences {a0, a1, a2, . . . } satisfying that a0 ≥ a1.

Indeed, given Pa ∈ SP i,sym with density sequence {a0, a1, a2, . . . } such that a0 < a1, there

exists Pb ∈ SP i,sym with density sequence {b0, b1, b2, . . . } such that b0 ≥ b1 and

V (Pb) ≤ V (Pa).

Consider the probability distribution Pb ∈ SP i,sym with density sequence {b0, b1, b2, , . . . }
defined as

b0 = (1 + δ)a0,

bk = (1− δ′)ak,∀k ≥ 1,
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where we choose δ > 0 and 0 < δ′ < 1 such that

b0 = b1, (B.6)

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1. (B.7)

Equation (B.7) makes Pb be a valid probability distribution. One can easily solve

(B.6) and (B.7), and write down the explicit expression for δ, δ′. The density sequence

{b0, b1, b2, . . . } satisfies b0 ≥ b1 (indeed, we have b0 = b1), and it is easy to verify that it

satisfies the differential privacy constraint, i.e.,

bk1 ≤ eεbk2 ,∀k1, k2 ∈ N with |k1 − k2| ≤ i.

Note that C(‖x‖1) is a monotonically increasing function of ‖x‖1, and compared to Pa,
Pb moves some probability of SP i,md from the (higher cost) area {x|‖bx‖ ≥ ∆

i
} to the (lower

cost) area {x|‖bx‖ ≤ ∆
i
}, and thus we have

V (Pb) ≤ V (Pa).

Therefore, among SP i,sym, to minimize the cost we only need to consider these probability

distributions with density sequences {a1, a2, a3, . . . } satisfying that a0 ≥ a1.

Next we show that among SP i,sym with density sequences {a1, a2, a3, . . . } satisfying a0 ≥
a1, to minimize the cost we only need to consider these probability distributions with density

sequences also satisfying that a1 ≥ a2.

Given Pa ∈ SP i,sym with density sequence {a1, a2, a3, . . . } such that a0 ≥ a1 and a1 < a2,

there exists Pb ∈ SP i,sym with density sequence {b1, b2, b3, . . . } such that b0 ≥ b1 and

b1 ≥ b2.

If i ≤ 2, we can construct Pb by scaling up a0, a1 and scale down ak for all k ≥ 2. More

precisely, define Pb with density sequence {b0, b1, b2, . . . } via

bk = (1 + δ)ak, k ≤ 1,

bk = (1− δ′)ak, k ≥ 2,

for some δ > 0 and 0 < δ′ < 1 such that

b2 = b1,
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+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1.

So we have b0 ≥ b1 ≥ b2. It is easy to check that Pb satisfies the differential privacy constraint,

and V (Pb) ≤ V (Pa) using the fact that C(‖x‖1) is a monotonically decreasing function in

terms of ‖x‖1.

If i ≥ 3, then without loss of generality we can assume a2 ≤ a0. Indeed, if a2 > a0, we

can scale up a0, a1 and scale down ak for all k ≥ 2 to make a2 = a0, and this operation

will preserve the differential privacy constraint and decrease the cost. Note that in this

case we cannot use the same scaling operation to make a2 ≤ a0, because it is possible that

after the scaling operation a0

ak
> eε for some 3 ≤ k ≥ i, which violates the differential privacy

constraint. Hence, we can assume a0 ≥ a2 > a1. Let ak′ be the largest value in {a3, . . . , a2+i}.
If

ak′
a2
< eε, we can scale up a1 and scale down a2 until a1 = a2 or

ak′
a2

= eε. It is easy to see

this scaling operation will preserve differential privacy and decrease the cost. If after this

scaling operation we have a2 = a1, then we are done. Suppose a1 is still bigger than a2.

Then a2 is the smallest element in {a2, a3, . . . , a2+i}. Therefore, we have max2≤k≤i
a0

ak
= a0

a2
.

Then we can scale up a0, a1 and scale down ak for k ≥ 2 until a1 = a2. This operation

will preserve the differential privacy constraint and decrease the cost. If we call the final

probability distribution we obtained Pb, we have Pb ∈ SP i,sym, and the density sequence

satisfying b0 ≥ b1 ≥ b2 (indeed, b1 = b2), and V (Pb) ≤ V (Pa).
By induction, we can show that among all probability distributions in SP i,sym, to mini-

mize the cost we only need to consider probability distributions with monotonically decreas-

ing density sequence.

Suppose among SP i,sym to minimize the cost we only need to consider probability distri-

bution with density sequence {a0, a1, a2, . . . } satisfying a0 ≥ a1 ≥ a2 ≥ · · · ≥ an. Then we

can show that among SP i,sym to minimize the cost we only need to consider probability dis-

tribution with density sequence {a0, a1, a2, . . . } satisfying a0 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ an+1.

Indeed, given Pa ∈ SP i,sym with density sequence {a0, a1, a2, . . . } satisfying a0 ≥ a1 ≥
a2 ≥ · · · ≥ an, we can construct Pb ∈ SP i,sym with density sequence {b0, b1, b2, . . . } satisfying

b0 ≥ b1 ≥ b2 ≥ · · · ≥ bn ≥ bn+1,

and

V (Pb) ≤ V (Pa).

If an+1 ≤ an, then we can choose Pb = Pa.
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Suppose an+1 > an. Without loss of generality, we can assume

an+1 ≤ ak, for k ≤ n+ 2− i. (B.8)

If an+1 > an+2−i, then we can scale up {a0, a1, . . . , an} and scale down {an+1, an+2, . . . } until

an+1 = ak. It is easy to verify that this scaling operation will preserve the differential privacy

constraint and decrease the cost.

Let k∗ be the smallest integer such that ak∗ < an+1. Note that by (B.8) we have n+3−i ≤
k∗ ≤ n. Let aj be the biggest element in {an+2, an+3, . . . , an+1+i}. Due to the differential

privacy constraint, we have
aj
an+1
≤ eε. Then we can scale up ak∗ and scale down an+1 until

ak∗ = an+1 or
aj
an+1

= eε. This operation will preserve the differential privacy constraint

and decrease the cost. If after this scaling operation ak∗ is still bigger than an+1, then we

can scale up {a0, a1, . . . , an} and scale down {an+1, an+2, . . . } until ak∗ = an+1. Due to the

fact that an+1 is the smallest element in {an+1, an+2, . . . , an+1+i}, this scaling operation will

preserve the differential privacy constraint and decrease the cost. Therefore, we will have

an+1 ≤ ak∗ .

Repeat the above steps for each k ∈ k∗ + 1, k∗ + 2, . . . , n such that ak < an+1. If we call

the final probability distribution we obtained Pb, we have Pb ∈ SP i,sym, and the density

sequence satisfying

b0 ≥ b1 ≥ b2 ≥ · · · ≥ bn,

and V (Pb) ≤ V (Pa).
Hence, among SP i,sym to minimize the cost we only need to consider probability distri-

bution with density sequence {a0, a1, a2, . . . } satisfying a0 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ an+1.

Therefore, among all probability distributions in SP i,sym, to minimize the cost we only

need to consider probability distributions with monotonically decreasing density sequence.

We conclude that

V ∗ = inf
P∈∪∞i=1SPi,md

V (P).

This completes the proof of Lemma B.4.

B.1.4 Step 3

Next we show that among all symmetric and piecewise constant probability density functions,

we only need to consider those which are geometrically decaying.
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More precisely, given positive integer i,

SP i,pd , { P | P ∈ SP i,md, and P has density sequence {a0, a1, . . . , an, . . . , }

satisfying
ak
ak+i

= eε,∀k ∈ N},

then

Lemma B.5.

V ∗ = inf
P∈∪∞i=1SPi,pd

V (P).

Proof. Due to Lemma B.4, we only need to consider probability distributions with symmetric

and piecewise constant probability density functions which are monotonically decreasing.

We first show that given Pa ∈ SP i,md with density sequence {a0, a1, . . . , an, . . . , }, if
a0

ai
< eε, then we can construct a probability distributions Pb ∈ SP i,md with density sequence

{b0, b1, . . . , bn, . . . , } such that b0
bi

= eε and

V (Pb) ≤ V (Pa).

Define a new sequence {b0, b1, . . . , bn, . . . } by scaling up a0 and scaling down {a1, a2, . . . }.
More precisely, define {b0, b1, . . . , bn, . . . } via

b0 = a0(1 + δ),

bk = ak(1− δ′),∀ k ≥ 1,

for some δ > 0 and 0 < δ′ < 1 such that

b0

bi
= eε,

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1.

So {b0, b1, . . . , bn, . . . } is a valid probability density sequence. Let Pb be the corresponding

probability distribution. It is easy to check that Pb satisfies the differential privacy constraint,

i.e.,

bk
bk+i

≤ eε,∀k ≥ 0.

Hence, Pb ∈ SP i,md. Since C(‖bx‖1) is a monotonically increasing function of ‖x‖1, we have
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V (Pb) ≤ V (Pa).
Therefore, for given i ∈ N, we only need to consider P ∈ SP i,md with density sequence

{a0, a1, . . . , an, . . . } satisfying a0

ai
= eε.

Next, we argue that among all probability distributions P ∈ SP i,md with density se-

quence {a0, a1, . . . , an, . . . , } satisfying a0

ai
= eε, we only need to consider those probability

distributions with density sequence also satisfying a1

ai+1
= eε.

Given Pa ∈ SP i,md with density sequence {a0, a1, . . . , an, . . . } satisfying a0

ai
= eε and

a1

ai+1
< eε, we can construct a new probability distribution Pb ∈ SP i,md with density sequence

{b0, b1, . . . , bn, . . . } satisfying

b0

bi
= eε,

b1

bi+1

= eε,

and V (Pa) ≥ V (Pb).
First, it is easy to see a1 is strictly less than a0, since if a0 = a1, then a1

ai+1
= a0

ai+1
≥ a0

ai
= eε.

We can construct a new density sequence by increasing a1 and decreasing ai+1 to make a1

ai+1
.

More precisely, we define a new sequence {b0, b1, . . . , bn, . . . } as

bk = ak,∀k 6= 1, k 6= i+ 1,

b1 = a1(1 + δ),

bi+1 = ai+1(1− δ′),

where δ > 0 and δ′ > 0 are chosen such that b1
bi+1

= eε and

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1.

It is easy to verify that {b0, b1, . . . , bn, . . . } is a valid probability density sequence and the

corresponding probability distribution Pb satisfies the differential privacy constraint (3.6).

Moreover, V (Pb) ≤ V (Pa). Therefore, we only need to consider P ∈ SP i,md with density

sequences {a0, a1, . . . , an, . . . } satisfying a0

ai
= eε and a1

ai+1
= eε.

Use the same argument, we can show that we only need to consider P ∈ SP i,md with

density sequences {a0, a1, . . . , an, . . . } satisfying

ak
ai+k

= eε,∀k ≥ 0.
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Therefore,

V ∗ = inf
P∈∪∞i=1SPi,pd

V (P).

Due to Lemma B.5, we only need to consider probability distribution with a symmetric,

monotonically decreasing, and geometrically decaying piecewise constant probability density

function. Because of the properties of symmetry and periodic (geometric) decay, for this

class of probability distributions, the probability density function over Rd is completely

determined by the probability density function over the set {x ∈ Rd|‖x‖1 < ∆}.
Next, we study what the optimal probability density function should be over the set

{x ∈ Rd|‖x‖1 < ∆}. It turns out that the optimal probability density function over the set

{x ∈ Rd|‖x‖1 < ∆} is a step function. We use the following three steps to prove this result.

B.1.5 Step 4

Lemma B.6. Consider a probability distribution Pa ∈ SP i,pd (i ≥ 2) with density sequence

{a0, a1, . . . , an, . . . }. Then there exists an integer k(i) and a probability distribution Pb ∈
SP i,pd with density sequence {b0, b1, . . . , bn, . . . } such that

b0 = b1 = b2 = · · · = bk(i),

b0

bi−1

= eε,

and

V (Pb) ≤ V (Pa).

Proof. For 0 ≤ k ≤ i− 1, define

wk ,
+∞∑
j=0

e−jε
∫ ∫

· · ·
∫

(j+ k
i
)∆≤‖x‖1<(j+ k

i
)∆

C(x)dx1dx2 . . . dxd,

and

uk ,
+∞∑
j=0

e−jεVol(Ai(ji+ k).
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Then the cost V (Pa) =
∑i−1

k=0wkak, and the constraint on ak is that

a0 ≥ a1 ≥ · · · ≥ ai−1,

a0 ≤ ai−1e
ε,

+∞∑
k=0

ukak = 1.

Therefore, to minimize V (P) among all probability distributions P ∈ SP i,pd, we need to

solve the following linear programming problem

minimize
a0,a1,...,ai−1

i−1∑
k=0

wkak,

subject to a0 ≥ a1 ≥ · · · ≥ ai−1,

a0 ≤ ai−1e
ε,

+∞∑
k=0

ukak = 1.

Let

hk ,
wk
uk
.

In the following we show that when d = 2, there exists an integer k(i) such that

h0 ≥ h1 ≥ · · · ≥ hk(i), (B.9)

hk(i) ≤ hk(i)+1 ≤ · · · ≤ hi−1, (B.10)

h0 ≤ hi−1. (B.11)

When d = 2,

hk =
wk
uk

=
4
3

∆3

i3

∑+∞
j=0 e

−jε(1 + 3(ji+ k) + 3(ij + k)2

2∆2

i2

∑+∞
j=0 e

−jε(1 + 2(ji+ k))

=
2

3

∆

i

3i2c2 + (6ik + 3i)c1 + (1 + 3k + 3k2)c0

(1 + 2k)c0 + 2ic1

.

Let g(k) =, 3i2c2+(6ik+3i)c1+(1+3k+3k2)c0
(1+2k)c0+2ic1

. It is easy to compute the derivative of g(k) with
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respect to k:

g′(k) =
6c2

0k
2 + 6c2

0k + c2
0 + 12c0c1ik + 6c0c1i− 6c2c0i

2 + 12c2
1i

2

((1 + 2k)c0 + 2ic1)2
.

Note that the numerator of g′(k) is an increasing function of k, and

g′(0) = c2
0 + 6c0c1i− 6c2c0i

2 + 12c2
1i

2

=
b(6i2 − 6i+ 1)− 1

(b− 1)3
< 0,

for sufficiently large i, and

g′(i− 1) =
6i2 − 6i+ 1− b

(1− b)3
> 0.

Therefore, hk first increases as k increases, and then decreases as k increases to i − 1.

Hence, there exists an integer k(i) such that (B.9) and (B.10) hold.

Next we compare hi−1 and h0:

hi−1 − h0 =
wi−1

ui−1

− w0

u0

=
2

3

∆

i

(3i− 2)(b− 1)2(i− 1)

(2bi− b+ 1)(b+ 2i− 1)
> 0.

Hence, (B.11) also holds.

Now we are ready to prove Lemma B.6.

Suppose ak(i) < ak(i)−1. We can scale up ak(i) and scale down ak(i)−1 to make ak(i) =

ak(i)−1. Since hk(i) ≤ hk(i)−1, i.e.,
wk(i)

uk(i)
≤ wk(i)−1

uk(i)−1
, this scaling operation will not increase the

cost V (Pa). Now we have ak(i) = ak(i)−1.

Suppose ak(i) = ak(i)−1 < ak(i)−2. Then we can scale up ak(i) and ak(i)−1, and scale down

ak(i)−2 to make ak(i) = ak(i)−1 = ak(i)−2. Since hk(i) ≤ hk(i)−1 ≤ hk(i)−2, this scaling operation

will not increase the cost V (Pa). Now we have ak(i) = ak(i)−1 = ak(i)−2.

After k(i) steps of these scaling operations, we can make a0 = a1 = · · · = ak(i), and this

will not increase the cost V (Pa).
Finally, if a0

ai−1
< eε, we can scale up a0, a1, . . . , ak(i), and scale down ai−1 to make a0

ai−1
=

eε. Since hi−1 ≥ h0 ≥ h1 ≥ · · · ≥ hk(i), this scaling operation will not increase the cost

V (Pa).
Let Pb be the probability distribution we obtained after the k(i) + 1 steps of scaling
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operations. Then Pb ∈ SP i,pd, and its density sequence {b0, b1, . . . , bn, . . . } satisfies

b0 = b1 = b2 = · · · = bk(i),

b0

bi−1

= eε,

and

V (Pb) ≤ V (Pa).

This completes the proof of Lemma B.6.

Therefore, due to Lemma B.6, for sufficiently large i, we only need to consider probability

distributions P ∈ SP i,pd with density sequence {a0, a1, . . . , an, . . . } satisfying

a0 = a1 = a2 = · · · = ak(i), (B.12)

b0

bi−1

= eε. (B.13)

More precisely, define

SP i,fr = { P ∈ SP i,pd | P has density sequence {a0, a1, . . . , an, . . . }

satisfying (B.12) and (B.13) }.

Then due to Lemma B.6,

Lemma B.7.

V ∗ = inf
P∈∪∞i=3SPi,fr

V (P).

Next, we argue that for each probability distribution P ∈ SP i,fr (i ≥ 3) with density

sequence {a0, a1, . . . , an, . . . }, we can assume that there exists an integer k(i)+1 ≤ k ≤ (i−2),

such that

aj = a0,∀0 ≤ j < k, (B.14)

aj = ai−1,∀k < j < i. (B.15)

More precisely,
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Lemma B.8. Consider a probability distribution Pa ∈ SP i,fr (i ≥ 3) with density sequence

{a0, a1, . . . , an, . . . }. Then there exists a probability distribution Pb ∈ SP i,fr with density

sequence {b0, b1, . . . , bn, . . . } such that there exists an integer k(i) + 1 ≤ k ≤ (i− 2) with

bj = a0,∀ 0 ≤ j < k, (B.16)

bj = ai−1,∀ k < j < i, (B.17)

and

V (Pb) ≤ V (Pa). (B.18)

Proof. If there exists an integer k(i) + 1 ≤ k ≤ (i− 2) such that

aj = a0,∀ 0 ≤ j < k,

aj = ai−1,∀ k < j < i,

then we can let Pb = Pa.
Otherwise, let k1 be the smallest integer in {k(i) + 1, k(i) + 2, . . . , i− 1} such that

ak1 6= a0,

and let k2 be the biggest integer in {k(i) + 1, k(i) + 2, . . . , i− 1} such that

ak2 6= ai−1.

It is easy to see that k1 6= k2. Then we can scale up ak1 and scale down ak2 simultaneously

until either ak1 = a0 or ak2 = ai−1. Since hk ,
wk
uk

is an increasing function of k when k > k(i),

and k(i) < k1 < k2, this scaling operation will not increase the cost.

After this scaling operation we can update k1 and k2, and either k1 is increased by one

or k2 is decreased by one.

Therefore, continue in this way, and finally we will obtain a probability distribution

Pb ∈ SP i,fr with density sequence {b0, b1, . . . , bn, . . . } such that (B.16), (B.17), and (B.18)

hold.

This completes the proof.
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Define

SP i,step = { P ∈ SP i,fr | P has density sequence {a0, a1, . . . , an, . . . }

satisfying (B.16) and (B.17) for some k(i) < k ≤ (i− 2) }.

Then due to Lemma B.8,

Lemma B.9.

V ∗ = inf
P∈∪∞i=3SPi,step

V (P).

As i → ∞, the probability density function of P ∈ SP i,fr will converge to a multiple

dimensional staircase function. Therefore, for d = 2 and the cost function L(x) = ‖x‖1,∀x ∈
R2, then

inf
P∈SP

∫ ∫
R2

L(x)P(dx1dx2) = inf
γ∈[0,1]

∫ ∫
R2

L(x)fγ(x)dx1dx2.

This completes the proof of Theorem 3.1.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Proof of Theorem 4.2

Proof of Theorem 4.2 . Consider a feasible solution to the optimization problem (4.8) with

primal variables

pk =

δ k = 1 + i∆, for i = 0, 1, 2, . . . , 1
2δ
− 1

0 otherwise
.

The corresponding value of the objective function is

2δ

1
2δ
−1∑

i=0

L(1 + i∆).

Therefore,

VLB ≤ 2δ

1
2δ
−1∑

i=0

L(1 + i∆). (C.1)

We claim that the above primal variables are the optimal solution. We prove this claim by

constructing the corresponding dual variables.

Associating dual variables µ with the constraint in (4.9), yk with the constraint in (4.10),

we have the dual linear program:

VLB = max µ− 2δ
∞∑
k=0

yk

such that µ ≥ 0, yk ≥ 0,∀k ∈ N, (C.2)

1

2
µ− y0 ≤ 0, (C.3)
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µ−
k∑

i=max(0,k−∆+1)

yk ≤ L(k),∀k ≥ 1. (C.4)

The complementary slackness conditions require that

µ− y0 − y1 = L(1),

µ−
1+k∆∑

i=2+(k−1)∆

yk = L(1 + k∆), for k = 1, 2, . . . ,
1

2δ
− 1,

yk = 0,∀k ≥ (
1

2δ
− 1)∆ + 2.

Consider the following dual variables:

µ = L(1 +
∆

2δ
),

yk = 0,∀k ≥ (
1

2δ
− 1)∆ + 2,

yk = L(k + ∆)− L(k + ∆− 1) + y(k + ∆),∀2 ≤ k ≤ (
1

2δ
− 1)∆ + 1,

y1 =

1
2δ∑
i=1

(L(1 + i∆)− L(i∆)) ≥ 0,

y0 = µ− L(1)− y1 = L(1 +
∆

2δ
)− L(1)−

1
2δ∑
i=1

(L(1 + i∆)− L(i∆)) ≥ 0.

It is easy to verify that these dual variables satisfy the constraints of the dual linear

program, and the value of the objective function is

µ− 2δ
+∞∑
k=0

yk =µ− 2δ

1
2δ
−1∑

i=0

(µ− L(1 + i∆))

=2δ

1
2δ
−1∑

i=0

L(1 + i∆).

Therefore, by weak duality we have

VLB ≥ 2δ

1
2δ
−1∑

i=0

L(1 + i∆).
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Due to (C.1), we conclude

VLB = 2δ

1
2δ
−1∑

i=0

L(1 + i∆).

C.2 Proof of Corollary 4.5

Proof of Corollary 4.5. First we compute the lower bound VLB via

VLB = 2

1
2δ
−1∑

i=0

δL(1 + i∆)

= 2δ

1
2δ
−1∑

i=0

(1 + i∆)2

= 2δ

1
2δ
−1∑

i=0

(1 + 2i∆ + i2∆2)

= 2δ(
1

2δ
+ 2∆

1
2δ

( 1
2δ
− 1)

2
+ ∆2 ( 1

2δ
− 1) 1

2δ
(2 1

2δ
− 1)

6
)

= 1 + ∆(
1

2δ
− 1) +

∆2

12δ2
+

∆2

6
− ∆2

4δ

= Θ(
∆2

12δ2
).

The upper bound is

VUB = 2

∆
2δ
−1∑

i=1

δ

∆
L(i) +

δ

∆
L(

∆

2δ
)

= 2
δ

∆

( ∆
2δ
− 1) ∆

2δ
(∆
δ
− 1)

6
+
δ

∆

∆2

4δ2

=
1

6
(

∆2

2δ2
+ 1− 3∆

2δ
) +

∆

4δ

=
∆2

12δ2
+

1

6

= Θ(
∆2

12δ2
).
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Therefore, the multiplicative gap goes to one as δ → 0, i.e.,

lim
δ→0

VUB
VLB

= 1.

C.3 Proof of Corollary 4.7

Proof of Corollary 4.7. Using the fact that L(·) is a monotonically increasing function for

k ≥ 0, we have

VUB − VLB = 2

∆
2δ
−1∑

i=1

δ

∆
L(i) +

δ

∆
L(

∆

2δ
)− 2δ

1
2δ
−1∑

i=0

L(1 + i∆)

≤ −2δL(1) +
δ

∆
L(

∆

2δ
) + 2δL(

∆

2δ
− 1)

≤ (2 +
1

∆
)δL(

∆

2δ
).

Therefore,

VUB
VLB

= 1 +
VUB − VLB

VLB

≤ 1 +
(2 + 1

∆
)δL( ∆

2δ
)

2δ
∑ 1

2δ
−1

i=0 L(1 + i∆)

≤ 1 +
(2 + 1

∆
)δL( ∆

2δ
)

2δL(1 + ( 1
2δ
− 1)∆)

,

and thus

lim
δ→0

VUB
VLB

≤ 1 + (1 +
1

2∆
)C.
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C.4 Proof of Theorem 4.8

Proof of Theorem 4.8. Consider the feasible primal variables {pk}k∈N defined as

Pk =

abi for k = 1 + i∆, 0 ≤ i ≤ n− 1

0 otherwise
. (C.5)

It is straightforward to verify that the above primal variables satisfy the constraints of the

relaxed linear program, and the corresponding value of the objective function is

2
n−1∑
k=0

abkL(1 + k∆).

We prove it is also the optimal value by constructing the optimal dual variables for the

corresponding dual linear program.

Associating dual variables µ, y0, y1, yi with the primal constraints in (4.19), (4.20), (4.21),

and (4.22), respectively, we have the dual linear program:

VLB := min µ− (2δ + eε − 1)
+∞∑
k=0

yk (C.6)

such that µ ≥ 0, yk ≥ 0 ∀k ∈ N (C.7)

1

2
µ− 1 + eε

2
y0 −

eε − 1

2
y1 −

eε − 1

2

+∞∑
k=2

yk ≤ 0 (C.8)

µ− eεy0 − eεy1 − (eε − 1)
+∞∑
k=2

yk ≤ L(1) (C.9)

µ− eε
k∑

l=max(0,k−∆+1)

yl − (eε − 1)
+∞∑
l=k+1

yl ≤ L(k),∀k ≥ 2. (C.10)

If the primal variables defined in (C.5) are the optimal solution, the complementary

slackness conditions require that the corresponding dual variables satisfy that

µ = L(1) + eε(y0 + y1) + (eε − 1)
+∞∑
l=2

yl

µ = L(1 + ∆) + eε
1+∆∑
l=2

yl + (eε − 1)
+∞∑

l=2+∆

yl
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µ = L(1 + k∆) + eε
1+k∆∑

l=2+(k−1)∆

yl + (eε − 1)
+∞∑

l=2+k∆

yl,∀1 ≤ k ≤ n− 1,

yl = 0,∀l ≥ 2 + (n− 1)∆.

Consider the following dual variables defined via

µ = L(1 + (n− 1)∆),

yk = 0,∀k ≥ 2 + (n− 2)∆,

yk = b(yk+∆ + L(k + ∆)− L(k + ∆− 1)),∀2 ≤ k ≤ 1 + (n− 2)∆,

y1 =
n−1∑
i=1

bi(L(1 + i∆)− L(i∆)),

y0 =
n−1∑
i=1

bi(L(i∆)− L(1 + (i− 1)∆)).

We verify that the above dual variables satisfy the inequality (C.8) in the following

(1 + eε)y0 + (eε − 1)y1 + (eε − 1)
+∞∑
k=2

yk − µ ≥ 0

⇔y0 − y1 + eε(y0 + y1) + (eε − 1)
+∞∑
k=2

yk − µ ≥ 0

⇔y0 − y1 + µ− L(1)− µ ≥ 0

⇔y0 − y1 − L(1) ≥ 0

⇔
n−1∑
i=1

bi(2L(i∆)− L(1 + (i− 1)∆)− L(1 + i∆)) ≥ L(1).

It is easy to verify that the dual variables satisfy the constraints (C.7), (C.8), (C.9), and

(C.10) in the dual linear program. Next we compute the corresponding value of the objective

function

µ− (2δ + eε − 1)
+∞∑
k=0

yk

=µ− (2δ + eε − 1)(y0 + y1 +
µ− L(1)− eε(y0 + y1)

eε − 1
)

=µ− 2δ + eε − 1

eε − 1
(µ− L(1)− y0 − y1)
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=L(1 + (n− 1)∆)− 2δ + eε − 1

eε − 1
(L(1 + (n− 1)∆)− L(1)−

n−1∑
i=1

bi(L(1 + i∆)− L(1 + (i− 1)∆)))

=2
n−1∑
k=0

abkL(1 + k∆),

which is also the value of the objective function in the primal problem achieved by the primal

variables defined in (C.5). Therefore, we conclude that

VLB = 2
n−1∑
k=0

abkL(1 + k∆).

C.5 Proof of Corollary 4.12

Proof of Corollary 4.12. For the cost function L(k) = |k|,

VLB = 2
n−1∑
k=0

abkL(1 + k∆)

= 2
n−1∑
k=0

abk(1 + k∆)

= 1 + 2a∆
n−1∑
k=0

bkk

= 1 + 2a∆(
b− bn

(1− b)2
− (n− 1)bn

1− b
).

Given δ > 0, VLB is a decreasing function of ε. Therefore, to lower bound
Vuniform
UB

VLB
in

the regime ε ≤ δ, we only need to consider the case ε = δ. Thus, in the following we set

ε = δ.

Since
∑n−1

k=0 ab
k = 1

2
, we have

a
1− bn

1− b
=

1

2

⇔ bn = 1− 1− b
2a

.
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As δ → 0, 1−b
2a

= 1−e−ε

2
δ+ eε−1

2
eε

→ 1
3
, and thus

lim
δ→0

bn = 1− 1

3
=

2

3
,

n = Θ(
log(3

2
)

ε
).

Note that a = Θ(3
2
δ) as δ → 0.

Therefore, as δ → 0,

VLB ≈ 2∆a(
1− 2

3

ε2
−

log( 3
2

)

ε
2
3

ε
)

≈ 2∆
3

2
δ(

1

3δ2
−

2
3

log(3
2
)

δ2
)

=
∆

δ
(1− 2 log

3

2
)

≈ 0.19
∆

δ
.

Recall V uniform
UB = ∆

4δ
.

Therefore,

lim
ε=δ→0

VUB
VLB

=
1

4(1− 2 log 3
2
)
≈ 1.32,

and thus

lim
ε≤δ→0

VUB
VLB

≤ 1

4(1− 2 log 3
2
)
≈ 1.32.

C.6 Proof of Corollary 4.13

Proof of Corollary 4.13. Using the same argument in the proof of Corollary 4.12, we can set

ε = δ.

For the cost function L(k) = k2,

VLB = 2
n−1∑
k=0

abkL(1 + k∆)
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= 2
n−1∑
k=0

abk(1 + k∆)2

= 1 + 4a∆
n−1∑
k=0

bkk + 2a∆2

n−1∑
k=0

bkk2

≈ 2a∆2

n−1∑
k=0

bkk2

= 2∆2 δ + eε−1
2

eε

−b+ 2( b(1−b
n−1)

(1−b)2 − (n−1)bn

1−b )− b2(1−bn−2)
1−b − (n− 1)2bn

1− b

≈ 2∆2 3

2
ε
2(

1− 2
3

ε2
−

2
3

log( 3
2

)

ε2
)− 1

3ε
− 2

3

(log( 3
2

))2

ε2

ε

≈ 3∆2

ε2
(
2

3
− 4

3
log(

3

2
)− 2

3
(log(

3

2
))2)

=
∆2

ε2
(2− 4 log(

3

2
)− 2(log(

3

2
))2)

≈ ∆2

20ε2

=
∆2

20δ2

Recall V uniform
UB = ∆2

12δ2 .

Therefore,

lim
ε=δ→0

V uniform
UB

VLB
=

1

12(2− 4 log(3
2
)− 2(log(3

2
))2)
≈ 5

3
,

and thus

lim
ε≤δ→0

V uniform
UB

VLB
≤ 1

12(2− 4 log(3
2
)− 2(log(3

2
))2)
≈ 5

3
.

C.7 Proof of Corollary 4.14

Proof of Corollary 4.14. For the cost function L(k) = |k|,

VLB = 2
n−1∑
k=0

abkL(1 + k∆)
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= 2
n−1∑
k=0

abk(1 + k∆)

= 1 + 2a∆
n−1∑
k=0

bkk

= 1 + 2a∆(
b− bn

(1− b)2
− (n− 1)bn

1− b
).

Given ε > 0, VLB is a decreasing function of δ. Therefore, to lower bound
V

Lap
UB

VLB
in the

regime δ ≤ ε, we only need to consider the case δ = ε. Thus, in the following we set δ = ε.

Following the same calculations in the proof of Corollary 4.12, we have

VLB ≈
∆

δ
(1− 2 log

3

2
)

≈ 0.19
∆

δ

= 0.19
∆

ε
.

On the other hand, we have

V
Lap
UB = 2

+∞∑
k=1

1− λ
1 + λ

λkk

=
2e−

ε
∆

1− e−2 ε
∆

≈ ∆

ε
,

as ε→ 0.

Therefore,

lim
ε=δ→0

V
Lap
UB

VLB
=

1

1− 2 log 3
2

≈ 5.29,

and thus

lim
ε≤δ→0

V
Lap
UB

VLB
≤ 1

1− 2 log 3
2

≈ 5.29.
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C.8 Proof of Corollary 4.15

Proof of Corollary 4.15. Using the same argument in the proof of Corollary 4.14, we can set

ε = δ.

For the cost function L(k) = k2, following the same calculations in the proof of Corollary

4.13, we have

VLB ≈
∆2

ε2
(2− 4 log(

3

2
)− 2(log(

3

2
))2)

≈ ∆2

20ε2
.

On the other hand, we have

V
Lap
UB = 2

+∞∑
k=1

1− λ
1 + λ

λkk2

=
2λ

(1− λ)2

≈ 2
∆2

ε2
,

as ε→ 0.

Therefore,

lim
ε=δ→0

V
Lap
UB

VLB
=

2

(2− 4 log(3
2
)− 2(log(3

2
))2)
≈ 40,

and thus

lim
ε≤δ→0

V
Lap
UB

VLB
≤ 2

(2− 4 log(3
2
)− 2(log(3

2
))2)
≈ 40.

C.9 Proof of Theorem 4.16

Proof of Theorem 4.16. Consider the dual program of the linear program (4.27),

VLB := max µ− δ

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)
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such that y
(1)
i1
, y

(2)
i2
, . . . , y

(d)
id
≥ 0,∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

µ−
∑

i1∈[k1−∆+1,k1]

y
(1)
i1
− · · · −

∑
id∈[kd−∆+1,kd]

y
(d)
id
≤ |k1|+ |k2|+ · · ·+ |kd|,∀(k1, . . . , kd) ∈ Zd.

Consider a candidate solution with

µ =
d∆

2δ

and for all m ∈ {1, 2, . . . , d},

y
(m)
i =



µ
d

i = 0

max(µ
d
− k∆, 0) i = k∆, for k ∈ Z, k ≥ 1

max(µ
d
− (|k| − 1)∆− 1, 0) i = k∆, for k ∈ Z, k ≤ −1

0 otherwise

.

It is easy to verify that this candidate solution satisfies the constraints, and the corre-

sponding value of the objective function is

µ− δ

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)
=µ− δd

∑
i1∈Z

y
(1)
i1

=µ− δd

 µ
d∆∑
i=0

(
µ

d
− i∆) +

µ
d∆
−1∑

i=0

(
µ

d
− i∆− 1)


=µ− δd

( µ
d
( µ
d∆

+ 1)

2
+

(µ
d

+ ∆− 2) µ
d∆

2

)
=µ− δd(

µ2

d2∆
+
µ

d
− µ

d∆
)

=µ− δ( µ
2

d∆
+ µ− µ

∆
)

=
d∆

4δ
− ∆− 1

2
d.

Therefore, we have

VLB ≥
d∆

4δ
− ∆− 1

2
d.
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C.10 Proof of Theorem 4.17

Proof of Theorem 4.17. Consider the dual program of the linear program (4.27),

VLB := max µ− δ

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)

such that y
(1)
i1
, y

(2)
i2
, . . . , y

(d)
id
≥ 0,∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

µ−
∑

i1∈[k1−∆+1,k1]

y
(1)
i1
− · · ·−

∑
id∈[kd−∆+1,kd]

y
(d)
id
≤ |k1|2 + |k2|2 + · · ·+ |kd|2,∀(k1, . . . , kd) ∈ Zd.

To avoid integer-rounding issues, assume that 1
2δ

is an integer. Consider a candidate

solution with

µ =
d∆2

4δ2

and for all m ∈ {1, 2, . . . , d},

y
(m)
i =



µ
d

i = 0

µ
d
− k2∆2 i = k∆, for 1 ≤ k ≥ 1

2δ

µ
d
− ((|k| − 1)∆ + 1)2 i = k∆, for − 1

2δ
≤ k ≤ −1

0 otherwise

.

It is easy to verify that this candidate solution satisfies the constraints, and the corre-

sponding value of the objective function is

µ− δ

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)
= µ− δd

∑
i1∈Z

y
(1)
i1

= µ− δd

 1
2δ∑
i=0

(
µ

d
− i2∆2) +

1
2δ
−1∑

i=0

(
µ

d
− (i∆ + 1)2)


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= µ− δd
(

(
1

2δ
+ 1)

µ

d
−∆2

1
2δ

( 1
2δ

+ 1)(1
δ

+ 1)

6
+

1

2δ

µ

d
− 1

2δ

−∆2 ( 1
2δ
− 1) 1

2δ
(1
δ
− 1)

6
−∆

1

2δ
(

1

2δ
− 1)

)
= µ− δd

(
(
1

δ
+ 1)

µ

d
−

∆2 1
2δ

( 1
2δ2 + 1)

3
− 1

2δ
−∆

1

2δ
(

1

2δ
− 1)

)
=

d∆2

12δ2
+ (

1

∆
− 1)

d∆2

4δ
+

1−∆

2
d+

d∆2

6
.

Therefore, we have

VLB ≥
d∆2

12δ2
+ (

1

∆
− 1)

d∆2

4δ
+

1−∆

2
d+

d∆2

6
.

C.11 Proof of Theorem 4.25

Proof of Theorem 4.25. Consider a candidate solution with µ =
d∆ log 3

2

β
(assuming k , µ

d∆
is

an integer), and for all m ∈ {1, 2, . . . , d},

y
(m)
i =


0 i ≤ −k∆

eβy
(m)
i−∆ + 1 i ∈ [−k∆ + 1, 0]

max(eβy
(m)
i−∆ − 1, 0) i ≥ 0

.

It is easy to verify that the above candidate solution satisfies the constraints of the dual

linear program. We can derive the analytical expression for ymi , which is

y
(m)
i =


0 i ≤ −k∆

e(k−j)β−1
eβ−1

i ∈ [−(j + 1)∆ + 1,−j∆], for j ∈ [0, k − 1]

max(ejβ e
kβ−2
eβ−1

+ 1
eβ−1

, 0) i ∈ [(j − 1)∆ + 1, j∆]

.

To avoid integer-rounding issues, assume that n , 1
β

log 1
2−ekβ = log 2

β
is an integer. Then

the value of the objective function with this candidate solution is

µ− β

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)
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=µ− βd
∑
i1∈Z

y
(1)
i1

=µ− βd∆

(
k∑
i=1

eiβ − 1

eβ − 1
+

n∑
i=1

(eiβ
ekβ − 2

eβ − 1
+

1

eβ − 1
)

)

=µ− βd∆

(
eβ(1−ekβ)

1−eβ − k
eβ − 1

+
ekβ − 2

eβ − 1

eβ(1− enβ)

1− eβ
+

n

eβ − 1

)

=
d∆ log 3

2

β
− βd∆

 eβ(1− 3
2

)

1−eβ −
log 3

2

β

eβ − 1
+
−1

2

eβ − 1

eβ(1− 2)

1− eβ
+

log 2

β(eβ − 1)


=
d∆ log 3

2

β
− βd∆

(
eβ

2(eβ − 1)2
−

log 3
2

β(eβ − 1)
− eβ

2(eβ − 1)2
+

log 2

β(eβ − 1)

)
=Θ

(
d∆

β
(log

3

2
− 1

2
+ log

3

2
+

1

2
− log 2)

)
= log

9

8
Θ

(
d∆

β

)
≈Θ

(
0.1178

d∆

β

)
,

as β , max(ε, δ)→ 0.

Therefore,

lim
max(ε,δ)→0

V ′LB
d∆
β

≥ log
9

8
≈ 0.1178.

C.12 Proof of Theorem 4.26

Proof of Theorem 4.26. Let α = 3
2
. Consider a candidate solution with µ = d∆2 log2 α

β2 (as-

suming k ,
√

µ
d

∆
= logα

β
is an integer), and for all m ∈ {1, 2, . . . , d},

y
(m)
i =


0 i ≤ −k∆

eβy
(m)
i−∆ + 2|i|+ 1 i ∈ [−k∆ + 1, 0]

max(eβy
(m)
i−∆ − (2i+ 1), 0) i ≥ 0

.

It is easy to verify that the above candidate solution satisfies the constraints of the dual

linear program.
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Define

z1 =
2

eβ − 1
,

z2 =
1− 2eβ∆

eβ−1

eβ − 1
,

z3 =
2

1− eβ
,

z4 =
1− 2eβ∆

1−eβ

1− eβ
.

We can derive the analytical expression for ymi , which is

y
(m)
i =

0 i ≤ −k∆

e(k−k′)β (z1(k∆ + j) + z2)− z1(k′∆ + j)− z2 i = −(k′∆ + j)
,

where k′ ∈ [0, k − 1], j ∈ [0,∆− 1], and for i = (m− 1)∆ + j, where j ∈ [1,∆],m ≥ 1,

y
(m)
i = max(am,j, 0),

where

am,j , emβ (z1(k∆ + ∆− j) + z2)− z1(∆− j)− z2 − z3(∆− j) + z4)

− z4 − z3((m− 1)∆ + j).

For each j ∈ [1,∆], and we are interested in finding the number m(j) such that am(j),j = 0.

As β → 0, from am(j),j = 0, we get

em(j)βekβ(
2

β
k∆− 2∆

β2
) = −2∆

β2
− 2

β
m(j)∆ + o(

1

β2
).

Therefore,

m(j) =
log γ

β
+ o(

1

β
),

where γ is the solution to

γα(logα− 1) = −(1 + log γ).

When α = 3
2
, we have γ ≈ 1.7468.
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Therefore, the value of the objective function is

µ− β

(∑
i1∈Z

y
(1)
i1

+
∑
i2∈Z

y
(2)
i2

+ · · ·+
∑
id∈Z

y
(d)
id

)
=µ− βd

∑
i1∈Z

y
(1)
i1

=µ− βd

 k−1∑
k′=0

∆−1∑
j=0

y
(1)
−(k′∆+j) +

∆∑
j=1

m(j)∑
m=1

y
(1)
(m−1)∆+j


=
d∆2 log2 α

β2
−

βd

(
1− e−kβ

1− e−β
ekβ((z1k∆ + z2)∆ + z1

∆(∆− 1)

2
)− z1∆2k(k − 1)

2
− z1k

∆(∆− 1)

2
− z2k∆

)
− βd

∆∑
j=1

(
eβ(1− em(j)β)

1− eβ
(ekβ(z1(k∆ + ∆− j) + z2)− z1(∆− j)

− z2 − z3(∆− j) + z4)− z4m(j)− z3∆
m(j)(m(j) + 1)

2
+ z3(∆− j)m′)

=
d∆2

β2
(log2 α− (α− 1)(2 logα− 2) + log2 α− 2 logα + (1− γ)α(2 logα− 2)

− 2 log γ − log2 γ) + o(
1

β2
)

=
d∆2

β2

(
2 log2 α− 2− 2αγ logα + 2αγ − 2 log γ − log2 γ

)
+ o(

1

β2
)

≈0.0177
d∆2

β2
+ o(

1

β2
),

as β , max(ε, δ)→ 0.

Therefore,

lim
max(ε,δ)→0

V ′LB
d∆2

β2

≥ 0.0177.
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