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ABSTRACT

Differential privacy is a framework to quantify to what extent individual privacy in a statis-
tical database is preserved while releasing useful aggregate information about the database.
This dissertation studies the fundamental trade-off between privacy and utility in differential
privacy in the most basic problem settings.

We first derive the optimal e-differentially private mechanism for single real-valued query
function under a very general utility-maximization (or cost-minimization) framework. The
class of noise probability distributions in the optimal mechanism has staircase-shaped prob-
ability density functions which are symmetric (around the origin), monotonically decreasing
and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture
of uniform probability distributions, providing a simple algorithmic description for the mech-
anism. Furthermore, the staircase mechanism naturally generalizes to discrete query output
settings as well as more abstract settings. We explicitly derive the parameter of the optimal
staircase mechanism for ¢; and /5 cost functions. Comparing the optimal performances with
those of the usual Laplacian mechanism, we show that in the high privacy regime (e is small),
the Laplacian mechanism is asymptotically optimal as € — 0; in the low privacy regime (e is
large), the minimum magnitude and second moment of noise are ©(Ae~2) and ©(A2 %) as
€ — 400, respectively, while the corresponding figures when using the Laplacian mechanism
are % and %2, where A is the sensitivity of the query function. We conclude that the gains
of the staircase mechanism are more pronounced in the low privacy regime.

We also show the optimality of the staircase mechanism for e-differentially privacy in
the multiple dimensional setting where the query output has multiple components, e.g.,
histogram query function. We prove that when the dimension is two, for the ¢! cost func-
tion, the noise probability distribution in the optimal mechanism has a multiple dimensional
staircase-shaped probability density function. We explicitly derive the parameter of the
optimal two-dimensional staircase mechanism, and study the asymptotical performance of
optimal mechanism in the high and low privacy regimes. Comparing the optimal perfor-
mances with those of the usual Laplacian mechanism, we show that in the high privacy

regime (e is small), the Laplacian mechanism is asymptotically optimal as € — 0; in the low
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privacy regime (e is large), the optimal cost is ©(e™5), while the cost of the Laplacian mech-
anism is %. We conclude that the gains of the staircase mechanism are more pronounced
in the low privacy regime.

Lastly, we study the optimal mechanisms in (e, d)-differential privacy for integer-valued
query functions under a utility-maximization/cost-minimization framework. We show that
the (¢, 0)-differential privacy is a framework not much more general than the (e, 0)-differential
privacy and (0, §)-differential privacy in the context of £* and ¢? cost functions, i.e., minimum
expected noise magnitude and noise power. In the same context of /! and ¢% cost functions,
we show the near-optimality of uniform noise mechanism and discrete Laplacian mechanism

in the high privacy regime (as (¢,0) — (0,0)).
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Due to the advances of information technology and the prevalence of social networks, vast
amounts of personal information can be efficiently collected and processed. The availability
of such big data enables us to produce a number of useful applications by analyzing the col-
lected information. For example, Netflix, an online DVD-rental service, can use subscribers’
preferences for movies to build a movie recommendation system; a user on Amazon.com, the
world’s largest online retailer, can use other users’ reviews and ratings to decide which item
might be good and reliable.

While releasing the statistics of collected data has great potential use for analysis, with-
out proper statistical disclosure mechanisms, the privacy of individuals in the dataset can be
jeopardized. In 2006, Netflix hosted the Netflix prize contest, an open competition in which
contestants designed algorithms to make predictions on user ratings for movies from the re-
leased dataset by Netflix. The training dataset provided by Netflix consisted of 100,480,507
ratings that 480,189 users gave to 17,770 movies [1]. To protect the privacy of customers
in the released training dataset, Netflix anonymized the dataset by removing users’ person-
al information, e.g., name, from the dataset, and only used integer IDs. However, these
anonymization approaches were not sufficient to preserve customers’ privacy. By connecting
the released anonymized dataset by Netflix and the Internet Movie Database as background
knowledge, Narayanan and Shmatikov [2] successfully de-anonymized and identified some
Netflix records of known users.

As can be seen from the Netflix prize example, one difficulty for defining a notion of
privacy which is resilient to attacks is to model the side information of adversaries.

Differential privacy is a recent formal notion of privacy, and it separates the issues of
modeling adversary side information by requiring the indistinguishability of whether an
individual is in the dataset or not based on the released information. The key idea of
differential privacy is that the presence or absence of any individual data in the database

should not affect the final released statistical information significantly, and thus it can give
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strong privacy guarantees against an adversary with arbitrary auxiliary information. For
more motivation and background of differential privacy, we refer the readers to the survey
by Dwork [3].

The basic problem setting in differential privacy for a statistical database is as follows:
suppose a dataset curator is in charge of a statistical database which consists of records of
many individuals, and an analyst sends a query request to the curator to get some aggregate
information about the whole database. The curator can simply compute the query output
by applying the query function to the whole database and send the query output directly
to the analyst. However, this approach may not provide privacy guarantees on each individ-
ual record in the database. To satisfy the differential privacy constraint, a query-releasing
mechanism needs to send a randomized query output to the analyst in a way such that the
probability distribution of the query output does not differ too much, whether or not any
individual record is in the database.

The standard mechanism to achieve differential privacy is to perturb the query output
by adding random noise. If noise is sufficiently large and random, it will help preserve
the differential privacy while the utility which the analyst can get from the query output
will deteriorate. On the other hand, if the noise is very small, while the analyst can get
high utility, it may not satisfy the given privacy constraint. Clearly, there exists a trade-off
between privacy and utility.

In many existing works studying the trade-off between accuracy and privacy in differential
privacy, the usual metric of accuracy is the variance, or magnitude expectation of the noise
added to the query output. For example, Hardt and Talwar [4] study the trade-off between
privacy and error for answering a set of linear queries over a histogram in a differentially
private way, where the error is defined as the worst expectation of the £2-norm of the noise
among all possible query output. Hardt and Talwar [4] derive lower and upper bounds on
the error given the differential privacy constraint. Nikolov, Talwar, and Zhang [5] extend the
result on the trade-off between privacy and error to the case of (¢, §)-differential privacy. Li
et al. [6] study how to optimize linear counting queries under differential privacy, where the
error is measured by the mean squared error of query output estimates, which corresponds
to the variance of the noise added to the query output to preserve differential privacy.

More generally, the error can be a general function depending on the additive noise
(distortion) to the query output. Ghosh, Roughgarden, and Sundararajan [7] study a very
general utility-maximization framework for a single count query with sensitivity one under
differential privacy, where the utility (cost) function can be a general function depending
on the noise added to the query output. They show that there exists a universally optimal

mechanism (adding geometric noise) to preserve differential privacy for a general class of



utility functions under a Bayesian framework. Brenner and Nissim [8] show that for general
query functions, no universally optimal differential privacy mechanisms exist. Gupte and
Sundararajan [9] generalize the result of [7] to a minimax setting.

The main theme of this dissertation is to delve into fundamental limits of data privacy
and derive the optimal mechanisms to preserve differential privacy in the most basic problem
settings, as opposed to preserving privacy for each and every application setting, as is done

in most works in the literature.

1.2 Our Contribution

In this dissertation, we study the fundamental trade-off between privacy and utility of d-
ifferential privacy in the most basic problem settings. Our results can be summarized as

follows:

o c-differential privacy in the single dimensional setting:

Given the differential privacy constraint, we derive the optimal differentially private
mechanism for a single real-valued query function under a general utility-maximization
(or cost-minimization) framework. The class of noise probability distributions in the
optimal mechanism has staircase-shaped probability density functions which are sym-
metric (around the origin), monotonically decreasing and geometrically decaying. The
staircase mechanism can be viewed as a geometric mixture of uniform probability dis-
tributions, providing a simple algorithmic description for the mechanism. Furthermore,
the staircase mechanism naturally generalizes to discrete query output settings as well
as more abstract settings. We show that adding query-output independent noise with
staircase distribution is optimal among all randomized mechanisms (subject to a mild

technical condition) that preserve differential privacy.

We explicitly derive the optimal noise probability distributions with minimum expec-
tation of noise amplitude and power. Comparing the optimal performances with those
of the Laplacian mechanism, we show that in the high privacy regime, the Laplacian
mechanism is asymptotically optimal; in the low privacy regime, the staircase mecha-
nism significantly outperforms the Laplacian mechanism. We conclude that the gains

are more pronounced in the low privacy regime.

o c-differential privacy in the multiple dimensional setting:

We extend the staircase mechanism from the single dimensional setting to the multi-

ple dimensional setting. We show that for histogram-like query functions, when the



dimension of the query output is two, the multiple dimensional staircase mechanism is
optimal for the ¢! cost function. We study the asymptotical performance of optimal
mechanisms in the high and low privacy regimes. Comparing the optimal performances
with those of the Laplacian mechanism, we conclude that in the multiple dimensional
setting, the Laplacian mechanism is asymptotically optimal in the high privacy regime,
and the staircase mechanism significantly outperforms the Laplacian mechanism in the

low privacy regime.

o (¢,0)-differential privacy:

We study the optimal mechanisms in (e, §)-differential privacy for integer-valued query
functions under a utility-maximization/cost-minimization framework. We show that
the (e, d)-differential privacy is a framework not much more general than the (e, 0)-
differential privacy and (0, §)-differential privacy in the context of ¢! and ¢* cost func-
tions, i.e., minimum expected noise magnitude and noise power. In the same context of
¢! and ¢? cost functions, we show the near-optimality of the uniform noise mechanism

and the discrete Laplacian mechanism in the high privacy regime (as (¢,0) — (0,0)).

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 studies the optimal mechanism
in the standard e-differential privacy setting for a single real-valued query function, and
presents our main result on the optimality of the staircase mechanism for a general class
of cost functions. Chapter 3 shows the optimality of the staircase mechanism in the multi-
dimensional setting in which the query output has multiple components for the ¢! cost
function. Chapter 4 studies the (approximately) optimal mechanisms in (e, d)-differential

privacy. We concludes this dissertation in Chapter 5.



CHAPTER 2

THE OPTIMAL MECHANISM IN e-DIFFERENTIAL
PRIVACY: SINGLE DIMENSIONAL SETTING

In this chapter, we study the optimal mechanism in e-differential privacy under a utility-
maximization framework. We first give the background on differential privacy in Section 2.1,
then give the precise problem formulation in Section 2.2. Section 2.3 gives an overview of our
main results on the optimality mechanism in e-differential privacy. We show the optimality of
query-output independent perturbation in Section 2.4, and present the optimal differentially
private mechanism, staircase mechanism, in Section 2.5. In Section 2.6, we apply our main
result to derive the optimal noise probability distribution with minimum expectation of
noise amplitude and power, respectively, and compare the performances with the Laplacian
mechanism. Section 2.7 presents the asymptotic properties of v* in the staircase mechanism
for momentum cost functions, and suggests a heuristic choice of + that appears to work
well for a wide class of cost functions. Section 2.8 generalizes the staircase mechanism for
integer-valued query functions in the discrete setting, and Section 2.9 extends the staircase
mechanism to the abstract setting. Section 2.10 discusses the connection between our work

and the literature.

2.1 Background on Differential Privacy

The basic problem setting in differential privacy for a statistical database is as follows:
suppose a dataset curator is in charge of a statistical database which consists of records of
many individuals, and an analyst sends a query request to the curator to get some aggregate
information about the whole database. Without any privacy concerns, the database curator
can simply apply the query function to the dataset, compute the query output, and send
the result to the analyst. However, to protect the privacy of individual data in the dataset,
the dataset curator should use a randomized query-answering mechanism such that the
probability distribution of the query output does not differ too much, whether or not any

individual record is in the database.
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Formally, consider a real-valued query function
q: D" — R,

where D" is the set of all possible datasets. The real-valued query function ¢ will be applied
to a dataset, and the query output is a real number. Two datasets Dy, Dy € D™ are called
neighboring datasets if they differ in at most one element, i.e., one is a proper subset of the
other and the larger dataset contains just one additional element [3]. A randomized query-
answering mechanism C for the query function ¢ will randomly output a number whose

probability distribution depends on query output ¢(D), where D is the dataset.

Definition 2.1 (e-Differential Privacy [3]). A randomized mechanism K gives e-differential

privacy if for all data sets Dy and Do differing in at most one element, and all S C Range(K),
PriKC(Dy) € S| < exp(e) Prik(D3) € S], (2.1)

where KC(D) is the random output of the mechanism K when the query function q is applied
to the dataset D.

The differential privacy constraint (2.1) essentially requires that for all neighboring
datasets, the probability distributions of the output of the randomized mechanism should be
approximately the same. Therefore, for any individual record, its presence or absence in the
dataset will not significantly affect the output of the mechanism, which makes it hard for
adversaries with arbitrary background knowledge to make inferences about any individual
from the released query output information. The parameter ¢ € (0,400) quantifies how

private the mechanism is: the smaller € is , the more private the randomized mechanism is.

2.1.1 Operational Meaning of e-Differential Privacy in the Context of
Hypothesis Testing

As shown by [10], one can interpret the differential privacy constraint (2.1) in the context
of hypothesis testing in terms of false alarm probability and missing detection probability.
Indeed, consider a binary hypothesis-testing problem over two neighboring datasets, Hy : D
versus H; : Dy, where an individual’s record is in Dy only. Given a decision rule, let S be
the decision region such that when the released output lies in S, H; will be rejected, and

when the released output lies in S (the complement of S), Hy will be rejected. The false



alarm probability Prs and the missing detection probability Py;p can be written as

Prpy = P(K(Dy) € S9),
Pyp = P(K (D) € S).

Therefore, from (2.1) we get
1 — Ppa < ePyp.
Thus
e Pyp+ Pra > 1.
Switch D; and D, in (2.1), and we get
Pr[IC(Ds) € S| < exp(e) Pr[IC(Dy) € S].
Therefore,
1 — Pyp < € Pra,
and thus
Pyp +ePry > 1.
In conclusion, we have

e Pyp+ Pra > 1,
Pyp + € Pry > 1.

The e-differential privacy constraint implies that in the context of hypothesis testing, Pr4
and Py;p cannot both be too small. We plot the regions of Pr4 and Pj;p under e-differential

privacy in Figure 2.1.

2.1.2 Laplacian Mechanism

The standard approach to preserving e-differential privacy is to perturb the query output

by adding random noise with Laplacian distribution proportional to the sensitivity A of the
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Figure 2.1: The Region of Pr4 and Py;p under e-Differential Privacy

query function ¢, where the sensitivity of a real-valued query function is defined as

Definition 2.2 (Query Sensitivity [3]). For a real-valued query function q : D" — R, the

sensitivity of q is defined as

A= max [q(D1)—q(Ds), (2.2)

Dy,D2€D"
for all Dy, Dy differing in at most one element.
Formally, the Laplacian mechanism is:

Definition 2.3 (Laplacian Mechanism [11]). For a real-valued query function q : D™ — R

with sensitivity A, the Laplacian mechanism will output
A
K(D) := q(D) + Lap(—-),

where Lap(X) is a random variable with probability density function

I =
=—e x R.
f(x) ¢ X, Vrxe
Consider two neighboring datasets D; and Dy where |¢(D1) — q(D2)| = A. It is easy

to compute the trade-off between the false alarm probability Pr4 and the missing detection
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Figure 2.2: The Region of Pr4 and P,;p under the Laplacian Mechanism

probability Py;p under the Laplacian mechanism, which is

1 —€e“Pry Pry € [O, 676)

) (2.3)

N |+

—e€

4§"FA PFA S [

6_6(1 — PFA) PFA € [

Pyp = e e,

71]

NI N
N[

The region of Pry and Fi;p under the Laplacian mechanism for two neighboring datasets
D, and D, such that |¢(D;) — q(D2)| = A is ploted in Figure 2.2.

Since its introduction in [11], the Laplacian mechanism has become the standard tool
in differential privacy and has been used as the basic building block in a number of works
on differential privacy analysis in other more complex problem settings, e.g., [6, 12-46].
Given this near-routine use of the query-output independent adding of Laplacian noise, the

following two questions are natural:
e [s query-output independent perturbation optimal?

e Assuming query-output independent perturbation, is Lapacian noise distribution op-

timal?

In this dissertation we answer the above two questions. Our main result is that given
an e-differential privacy constraint, under a general utility-maximization (equivalently, cost-
minimization) model, for a single real-valued query function (assuming local sensitivity is

the same as global sensitivity),



e adding query-output independent noise is indeed optimal (under a mild technical con-
dition), and

e the optimal noise distribution is not Laplacian distribution; instead, the optimal one

has a staircase-shaped probability density function.

We also generalize the same result to the discrete setting where the query output is

integer-valued and to more abstract settings.

2.2  Problem Formulation

We formulate a utility-maximization (cost-minimization) problem under the differential pri-

vacy constraint.

2.2.1 Differential Privacy Constraint

A general randomized releasing mechanism K is a family of noise probability distributions

indexed by the query output (denoted by t), i.e.,
K= {Pt 1t e R},

and given dataset D, the mechanism K will release the query output ¢t = g(D) corrupted by

additive random noise with probability distribution P;:
IC(D) — t + Xt7

where X, is a random variable with probability distribution P;.
The differential privacy constraint (2.1) on K is that for any ¢1,t € R such that |t; —t5| <
A (corresponding to the query outputs for two neighboring datasets),

P (S) < Py, (S + t1 — t2), ¥V measurable set S C R, (2.4)

where for any t e R, S+t := {s+t|s e S}.

10



2.2.2  Utility Model

The utility model we use in this dissertation is a very general one, which is also used in
the works by Ghosh, Roughgarden, and Sundararajan [7], Gupte and Sundararajan [9], and
Brenner and Nissim [8].

Consider a cost function £(-) : R — R, which is a function of the additive noise. Given
additive noise z, the cost is £(x). Given query output ¢ € R, the additive noise is a random

variable with probability distribution P;, and thus the expectation of the cost is

/x  L(@)Pi(ds).

The objective is to minimize the worst-case cost among all possible query outputs {t € R},

ie.,

minimize sup/ L(x)Py(dx). (2.5)
zeR

teR

2.2.3 Optimization Problem

Combining the differential privacy constraint (2.4) and the objective function (2.5), we for-

mulate a functional optimization problem:

minimize sup/ L(x)P(dx) (2.6)
{Pitter  teR JzeR

subject to Py, (S) < e“Py, (S + t1 — t2),V measurable set S C R, V|t; —to] <A, (2.7)

2.3 An Overview of Our Results

2.3.1 Adding Query-Output Independent Noise Is Optimal

Our first result is that under a mild technical condition, adding query-output independen-
t noise is optimal, i.e., we can assume that P, = P for all ¢ € R for some probability
distribution P.

For any positive integer n, and for any positive real number 7', define

T T
Kz 2{ {P:}ier | {P:}ier satisfies (2.7), Py = P.r,fort € [kﬁ’ (k+ 1)5)’ keZ,

and Pyyr = P,V €R }.
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Theorem 2.1. Given any family of probability distribution {P;}ier € UrsoUn>1 K1y, there
exists a probability distribution P* such that the family of probability distributions {P} }er
with P} = P* satisfies the differential privacy constraint (2.7) and

sup /xER L(x)P;(dx) < sup /xER L(z)Py(dx).

teR teR

Theorem 2.1 states that if we assume the family of noise probability distributions is
piecewise constant (the length of pieces can be arbitrarily small) over ¢, and periodic (the
period can be arbitrary) over ¢, then in the optimal mechanism we can assume P, does not

depend on t. We conjecture that the technical condition can be done away with.

2.3.2  Optimal Noise Probability Distribution

Due to Theorem 2.1, adding query-output independent noise is optimal, and thus we only
need to study what the optimal noise probability distribution is. Let P denote the probability
distribution of the noise added to the query output. Then the optimization problem (2.6)
and (2.7) is reduced to

minimize / L(z)P(dx)
P z€eR

subject to P(S) < e“P(S + d),V measurable set S C R, V|d| < A.

Consider a staircase-shaped probability distribution with probability density function
(p.d.f.) f,(-) defined as

;

a(7) z € [0,7A)
e ‘a(v) z € [YA,A)
fr(@) = .
e " flr—kA) zelkA (k+1)A)forkeN
\fv(—x) x <0,
where
a7) & ———C

2A(y + e (1 = 7))

is a normalizing constant to make [ . f,(z)dz = 1.

Our main result is

12



Theorem 2.2. If the cost function L(-) is symmetric and increasing, and sup,s, % <
+oo for someT" > 0, the optimal noise probability distribution has a staircase-shaped proba-

bility density function fy-(-), where

v = arg min/ L(z)fy(x)dx.
vel0,1] JzeRr
We plot the probability density functions of the Laplacian mechanism and the staircase
mechanism in Figure 2.3. Figure 2.4 in Section 2.5 gives a precise description of the staircase
mechanism.
The staircase mechanism is specified by three parameters: e, A, and ~*, which is de-
termined by e and the cost function £(-). For certain classes of cost functions, there are

closed-form expressions for the optimal v*.

v

v

(a) Laplacian Mechanism (b) Staircase Mechanism

Figure 2.3: Probability Density Functions of the Laplacian Mechanism and the Staircase
Mechanism

2.3.3 Applications: Minimum Noise Magnitude and Noise Power

We apply our main result Theorem 2.4 to two typical cost functions £(x) = |z| and L(z) =
2%, which measure noise magnitude and noise power, respectively. We derive the closed-
form expressions for the optimal parameters v* for these two cost functions. Comparing
the optimal performances with those of the Laplacian mechanism, we show that in the high
privacy regime (e is small), the Laplacian mechanism is asymptotically optimal as ¢ — 0;
in the low privacy regime (e is large), the minimum expectation of noise amplitude and

the minimum noise power are ©(Ae~2) and @(A%’%) as € — —+00, respectively, while the

expectation of noise amplitude and the noise power using the Laplacian mechanism are %
and %2, respectively, where A is the sensitivity of the query function. We conclude that the

gains are more pronounced in the low privacy regime.

13



2.3.4 Extension to the Discrete Setting

Since for many important practical applications, query functions are integer-valued, we also
derive the optimal differentially private mechanisms for answering a single integer-valued
query function. We show that adding query-output independent noise is optimal under
a mild technical condition, and the optimal noise probability distribution has a staircase-
shaped probability mass function, which can be viewed as the discrete variant of the staircase
mechanism in the continuous setting.

This result helps us directly compare our work and the existing works [7,9] on integer-
valued query functions. Our result shows that for integer-valued query functions, the optimal
noise probability mass function is also staircase-shaped, and in the case the sensitivity A = 1,
the optimal probability mass function is reduced to the geometric distribution, which was
derived in [7,9]. Therefore, this result can be viewed as a generalization of [7,9] in the

discrete setting for query functions with arbitrary sensitivity.

2.4 Optimality of Query-Qutput Independent Perturbation

Recall that the optimization problem we study in this work is

minimize sup/ L(z)P(dx) (2.8)

{Ps}ier teR
subject to Py, (S) < e“Pp, (S + t1 — ta),V measurable set S C R, V|t; — o] < A, (2.9)

where P; is the noise probability distribution when the query output is ¢.

Our claim is that in the optimal family of probability distributions, P; can be independent
of t, i.e., the probability distribution of noise is independent of the query output. We prove
this claim under a technical condition which assumes that {P; };cr is piecewise constant and
periodic (the period can be arbitrary) in terms of t.

For any positive integer n, and for any positive real number 7', define

T T
Krn 2{ {P}icr | {P:}icr satisfies (2.7), P, = Pz, for t € [kg, (k + 1)5)7 keZ,
and Pyyr = P,V €R }.

Theorem 2.3. Given any family of probability distribution {Pi}ier € UrsoUn>1 K1, there
exists a probability distribution P* such that the family of probability distributions {P} }er

14



with P} = P* satisfies the differential privacy constraint (2.7) and

teR teR

sup /xeR L(z)P;(dx) < sup /xeR L(z)P(dx).

Proof. Here we briefly discuss the main proof technique. For the complete proof, see Ap-
pendix A.1. The proof of Theorem 2.3 uses two properties on the family of probability
distributions satisfying differential privacy constraint (2.7). First, we show that for any
family of probability distributions satisfying (2.7), any translation of the probability distri-
butions will also preserve differential privacy, and the cost is the same. Second, we show that
given a collection of families of probability distributions each of which satisfies (2.7), we can
take a convex combination of them to construct a new family of probability distributions
satisfying (2.7), and the new cost is not worse. Due to these two properties, given any family
of probability distributions {P;}er € Urso Up>1 K7, one can take a convex combination
of different translations of {P;}ier to construct {P;}icr with P; = P*, and the cost is not

worse. O

Theorem 2.3 states that if we assume the family of noise probability distributions is
piecewise constant (over intervals with length %) in terms of ¢, and periodic over ¢ (with
period T'), where T, n can be arbitrary, then in the optimal mechanism we can assume P,

does not depend on t. We conjecture that the technical condition can be done away with.

2.5 Optimal Noise Probability Distribution

Due to Theorem 2.3, to derive the optimal randomized mechanism to preserve differential
privacy, we can restrict our attention to noise-adding mechanisms where the noise probability
distribution does not depend on the query output. In this section we state our main result
Theorem 2.4 on the optimal noise probability distribution.

Let P denote the probability distribution of the noise added to the query output. Then
the optimization problem in (2.6) and (2.7) is reduced to

minipmize /xERE(x)P(dx) (2.10)

subject to P(S) < e“P(S + d),V measurable set S C R, V|d| < A. (2.11)

We assume that the cost function £(-) satisfies two (natural) properties.
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Figure 2.4: The Staircase-Shaped Probability Density Function f,(z)

Property 2.1. L(x) is a symmetric function, and monotonically increasing for x > 0, i.e,

L(x) satisfies

and

L(z) < L(y),V0 <z <wy.

In addition, we assume L(x) satisfies a mild technical condition which essentially says

that £(-) does not increase too fast (while still allowing it to be unbounded).
Property 2.2. There ezists a positive integer T' such that L(T') > 0 and L(z) satisfies

L(z+1)
_— . 2.12
igg £(0) < 400 ( )

Consider a staircase-shaped probability distribution with probability density function
(p.d.f.) fy(:) defined as

;

a() z €[0,7A)
e ‘a x A A
fwy =1 b 213)
e " fy(x —kA) zelkA (k+1)A)for ke N
fy(—x) x <0,

\
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where

—€
A 1—e

M) = AT e =)

is a normalizing constant to make [ cr fo(r)dz = 1. Tt is easy to check that for any v € [0, 1],
the probability distribution with p.d.f. f,(-) satisfies the differential privacy constraint (2.11).
Indeed, the probability density function f,(z) satisfies

fy(x) <efylr+d), Ve e R, |d| <A,

which implies (2.11).
Let SP denote the set of all probability distributions satisfying (2.11). Our main result

on the optimal noise probability distribution is:

Theorem 2.4. If the cost function L(x) satisfies Property 2.1 and Property 2.2, then

plensfp /IER L(z)P(dx) = ’Yér[%)f’” /;EE]R L(z) fy(x)d.
Proof. Here we briefly discuss the main proof idea and technique. First, by deriving several
properties on the probability distributions satisfying the e-differential privacy constraint, we
show that without loss of generality, one can “discretize” any valid probability distribution,
even for those which do not have probability density functions. Second, we show that to
minimize the cost, the probability density function of the discretized probability distribution
should be monotonically and geometrically decaying. Lastly, we show that the optimal prob-
ability density function should be staircase-shaped. For the complete proof, see Appendix
A2. O

Therefore, the optimal noise probability distribution to preserve e-differential privacy for
any real-valued query function has a staircase-shaped probability density function, which is

specified by three parameters €, A, and v* = arg min fxeR L(x)fy(x)dx.
v€[0,1]
A natural and simple algorithm to generate random noise with staircase distribution is

given in Algorithm 1.

In the formula,
X+ S((1=B)((G+~4U)A)+ B((G++v+ (1 —~)U)A)),

where

e S determines the sign of the noise,

17



Algorithm 1 Generation of a Random Variable with Staircase Distribution

Input: €, A, and v € [0,1].
Output: X, a random variable (r.v.) with staircase distribution specified by €, A, and

7.
Generate a r.v. S with Pr[S =1] =Pr[S = —-1] =
Generate a geometric r.v. G with Pr[G =i] = (1 — )bi for integer ¢ > 0, where b = e™¢.

Generate a r.v. U uniformly distributed in [0,
Generate a binary r.v. B with Pr[B = 0] =
X+—S(1-B)(G+U)A)+B(G+~v+
Output X.

1].
iy and Pr[B = 1] = =mb_

- NU)A)).

+(

e ( determines which interval [GA, (G + 1)A) the noise lies in,

e B determines which subinterval of [GA, (G +v)A) and [(G+7)A, (G+1)A) the noise

lies in,

e U helps to uniformly sample the subinterval.

2.6 Applications

In this section, we apply our main result Theorem 2.4 to derive the parameter v* of the stair-
case mechanism with minimum expectation of noise magnitude and noise second moment,

and then compare the performances with the Laplacian mechanism.

2.6.1 Optimal Noise Probability Distribution with Minimum Expectation
of Noise Amplitude

To minimize the expectation of amplitude, we have cost function L£(z) = |z|, and it is easy
to see that it satisfies Property 2.1 and Property 2.2.
To simplify notation, define b £ ¢, and define

for a given probability distribution P.
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Theorem 2.5. To minimize the expectation of the amplitude of noise, the optimal noise

probability distribution has probability density function f.«(-) with

B 1
C l+4ed

*

v

Y

and the minimum expectation of noise amplitude s

V(Py) = A

ec—1°

Proof. See Appendix A.3. m

Next, we compare the performances of the optimal noise probability distribution and the
Laplacian mechanism. The Laplace distribution has probability density function

f@) = gz,

where \ = %. So the expectation of the amplitude of noise with the Laplace distribution is

+00 A

Viw 2 [ lalplayin = 2.

By comparing V(P,«) and Vi,,, it is easy to see that in the high privacy regime (e

is small) the Laplacian mechanism is asymptotically optimal, and the additive gap from

optimal value goes to 0 as € — 0; in the low privacy regime (e is large), Vi, = %, while
V(P,) = O(Ae~2). Indeed,

Corollary 2.6. Consider the cost function L(x) = |x|. In the high privacy regime (€ is

small),

Vi —V(Po) = A (£ = € 4 0@
Lap ") =2\ 24 5760 O\

as € — 0.

And in the low privacy regime (€ is large),

VLap =

)

a
€
V(Py) = O(Ac™5),

as € — +00.
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Figure 2.5: Optimal v* for the Cost Function L(x) = z?

2.6.2 Optimal Noise Probability Distribution with Minimum Power

Given the probability distribution P of the noise, the power of noise is defined as fx R 2?P(dz).
Accordingly, the cost function £(z) = z?, and it is easy to see it satisfies Property 2.1 and
Property 2.2.

Recall b £ e~<.

Theorem 2.7. To minimize the power of noise (accordingly, L(x) = x?), the optimal noise

probability distribution has probability density function f.«(-) with

b (b— 267 4 26" — bP)/2
== + )
1-b 21/3(1 — b)2

and the minimum power of noise is

2272/3b2/3(1 + b)2/3 + b

V(Py) = A L

Proof. See Appendix A.4. O

We plot v* as a function of b for the cost function £(z) = z? in Figure 2.5.

Next, we compare the performances of the optimal noise probability distribution and the
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Laplacian mechanism. The power of noise with Laplace distribution with A = % is

+o0 2
1 |z| A
A 2 _lzl
VLap:/ooxﬁe )‘dl’:26—2

By comparing V(P,-) and Vi, it is easy to see that in the high privacy regime (e
is small) the Laplacian mechanism is asymptotically optimal, and the additive gap from

optimal value is upper bounded by a constant as ¢ — 0; in the low privacy regime (€ is

large), Vi, = @(%2)7 while V(P,.) = O(A2%). Indeed,

2

Corollary 2.8. Consider the cost function L(x) = z*. In the high privacy regime (e is

small),

€

1 2
_ L) = A2 _ 4
Viap — V(Pye) = A (12 5+ Ole )) ,

as € — 0.

And in the low privacy regime (€ is large),

2A2

Viap = a2

V(P,.) = B(A% %),

as € — +00.

2.7 Property of v*

In this section, we derive some asymptotic properties of the optimal +* for moment cost

functions, and give a heuristic choice of v which only depends on e.

2.7.1 Asymptotic Properties of v*

In Section 2.6, we have seen that for the cost functions £(z) = |z| and L(z) = z?, the
optimal v* lies in the interval [0, %] for all € and is a monotonically decreasing function of ¢;
and furthermore, v* — % as € goes to 0, and v* — 0 as € goes to +o0.

We generalize these asymptotic properties of 7 as a function of € to all moment cost

functions. More precisely, given m € N and m > 1,
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Theorem 2.9. Consider the cost function L(x) = |x|™. Let «v* be the optimal 7 in the

staircase mechanism for L(x), i.e.,

v = arg min/ |z f (z)dzx.
T€R

~v€[0,1]
We have
v = %, ase — 0,
v* =0, ase — 4o0.
Proof. See Appendix A.5. O]

Corollary 2.10. For all the cost functions L(-) which can be written as

L) =) ailz|®,
i=1

wheren > 1, a; € R, d; € N and oy, d; > 0 for all i, the optimal v* in the staircase mechanism

has the following asymptotic properties:

1
fy*—>§, ase — 0,

v — 0, ase — +o0.

2.7.2 A Heuristic Choice of ~

We have shown that in general the optimal +* in the staircase mechanism depends on both
¢ and the cost function L£(-). Here we give a heuristic choice of v which depends only on ¢,
and show that the performance is reasonably good in the low privacy regime.

Consider a particular choice of v, which is

It is easy to see that 4 has the same asymptotic properties as the optimal v* for momen-

tum cost functions, i.e.,

¥ —0, asb — 0,

.1
'y—>§, as b — 1.
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Furthermore, the probability that the noise magnitude is less than Z:A is approximately

1

5 in the low privacy regime (e — 400). Indeed,

e—e 1—b b_bZ
A] = Pr[|X| < 7A] = 2a(7)7A = Y =
5 Al = Pr{|X] < 7A] = 2a(7)7 ST =5) T

Pr{|X| <

which goes to £ as € — 400 (accordingly, b — 0).

On the other hand, for the Laplacian mechanism,

6_6 62 A 1 =l _ee” €
Pr[|X]| < 2A]: e Ydr=1—e 7,

which goes to zero as € — 400.

We conclude that in the low privacy regime as € — 400, the staircase mechanism with
the heuristic parameter ¥ = % can guarantee with probability about % the additive noise is
very close to zero, while the probability given by the Laplacian mechanism is approximately

Zero.

2.8 Extension to the Discrete Setting

In this section, we extend our main result Theorem 2.3 and Theorem 2.4 to the discrete
settings, and show that the optimal noise-adding mechanism in the discrete setting is a

discrete variant of the staircase mechanism in the continuous setting.

2.8.1 Problem Formulation

We first give the problem formulation in the discrete setting.

Consider an integer-valued query function®
q:D" —7Z,

where D" is the domain of the databases. Let A denote the sensitivity of the query function
q as defined in (2.2). Clearly, A is an integer in this discrete setting.

In the discrete setting, a generic randomized mechanism K is a family of noise probability

'Without loss of generality, we assume that in the discrete setting the query output is integer-valued.
Indeed, any uniformly spaced discrete setting can be reduced to the integer-valued setting by scaling the
query output.
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distributions over the domain Z indexed by the query output (denoted by i), i.e.,
K= {’PZ 11 € Z},
and given dataset D, the mechanism C will release the query output i = g(D) corrupted by

additive random noise with probability distribution P;:

where X is a discrete random variable with probability distribution P;.
Then, the e-differential privacy constraint (2.1) on K is that for any i,y € Z such that

iy —ia] < A (corresponding to the query outputs for two neighboring datasets), and for any
(2.14)

subset S C Z,
Pll(]) < eepiz(j +i — ZQ)av] € Z7 ’7,1 - 22‘ < Aa

and the goal is to minimize the worst-case cost

subject to the differential privacy constraint (2.14).

2.8.2  Optimality of Query-Qutput Independent Perturbation

In this section, we show that query-output independent perturbation is optimal in the dis-

crete setting.
For any integer n > 1, define
Kn = { {P:}icz| {P;}icz satisfies (2.14), and Py, = Py, Vi € Z}.

Theorem 2.11. Given any family of probability distribution {P;}icz € Un>1K,, there exists
a probability distribution P* such that the family of probability distributions {P}}icz with

Pr = P* satisfies the differential privacy constraint (2.14) and

i€z ;S5

sup > LG)P;(G) <sup Y LG)Pi()-

i€z ;25

24



Proof. The proof is essentially the same as the proof of Theorem 2.3, and thus is omitted. [

Theorem 2.11 states that if we assume the family of noise probability distributions is
periodic in terms of 7 (the period can be arbitrary), then in the optimal mechanism we can
assume P; does not depend on . We conjecture that the technical condition can be done

away with.

2.8.3 Optimal Noise Probability Distribution

Due to Theorem 2.11, we only need to consider query-output independent perturbation
mechanisms.
Let q(D) be the value of the query function evaluated at dataset D. The noise-adding

mechanism C will output

where X is the integer-valued noise added by the mechanism to the output of query function.

Let P be the probability distribution of the noise X. Then the optimization problem we

study is
+oo
minjmize :2_20 L(i)P(i) (2.15)
subject to P(i) < e“P(i +d),Vi € Z,d € Z, |d| < [Al. (2.16)

It turns out that when the cost function £(-) is symmetric and monotonically increasing
for ¢ > 0, the solution to the above optimization problem is a discrete variant of the staircase
mechanism in the continuous setting.

As in the continuous setting, we also assume that the cost function £(-) is symmetric

and monotonically increasing for x > 0, i.e.,
Property 2.3.

L(i) = L(—i),Vi € Z
L(i) < L£(i),Vi,j € L,0<i < .

The easiest case is A = 1. In the case that A = 1, the solution is the geometric
mechanism, which was proposed in [7].
Recall b £ .
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Figure 2.6: The Staircase-Shaped Probability Mass Function P, (7)

Theorem 2.12. If the cost function L(-) satisfies Property 2.3 and A = 1, then the geometric

mechanism, which has a probability mass function P with P(i) = %bli‘,‘v’i € Z, s the

optimal solution to (2.15).
Proof. See Appendix A.6. O]

For fixed general A > 2, consider a class of symmetric and staircase-shaped probability
mass functions defined as follows. Given an integer 1 < r < A, denote P, as the probability

mass function defined by

a(r) 0<i<r
e ‘a(r r<i<A
Py =] < (217
e "P.(i —kA) kA<i<(k+1)AforkeN
\77,«(—@') i<0
for i € Z, where
A 1—0b

O T S L

It is easy to verify that for any 1 <r < A, P, is a valid probability mass function and it
satisfies the e-differential privacy constraint (2.16). We plot the staircase-shaped probability
mass function P, (i) in Figure 2.6.

Let SP be the set of all probability mass functions which satisfy the e-differential privacy
constraint (2.16).
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Theorem 2.13. For A > 2, if the cost function L(z) satisfies Property 2.3, then

+oo +oo

Al 2 LOPG = min ) 3 LOPLD)
Proof. See Appendix A.6. m

Therefore, the optimal noise probability distribution to preserve e-differential privacy
for integer-valued query function has a staircase-shaped probability mass function, which is

specified by three parameters ¢, A, and 7* = argmin >..°°_ £(i)P,(i). In the case A = 1,
{reN[1<r<A}
the staircase-shaped probability mass function is reduced to the geometric mechanism.

2.9 Extension to the Abstract Setting

In this section, we show how to extend the staircase mechanism to the abstract setting. The
approach is essentially the same as the exponential mechanism in [47], except that we replace
the exponential function by the staircase function.

Consider a privacy mechanism which maps an input from a domain D™ to some output
in a range R. Let p be the base measure of R. In addition, we have a cost function
C:D"x R —[0,400).

Define A as

A £ IC(Dy,r) = C(Dy, 7)),

rER, D1 D2\ Dy~ Da[<1
i.e., the maximum difference of cost function for any two inputs which differ only on one
single value over all r € R [47].

A randomized mechanism K achieves e-differential privacy if for any Dy, Dy C D" such
that |D; — Dy| < 1, and for any measurable subset S C R,

Pr[IC(Dq) € S| < exp(e) Pr[IC(Ds) € S].

Definition 2.4 (Staircase Mechanism in the Abstract Setting). For fized v € [0, 1], given
mput D € D", the staircase mechanism in the abstract setting will output an element in R

with the probability distribution defined as

 fes F(C(D, ) ()
Jocre F5(C(Dr)u(dr)

Pp(S) ,V measurable set S C R,
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where f, is the staircase-shaped function defined in (2.13).

Theorem 2.14. The staircase mechanism in the abstract setting in Definition 2.4 achieves

2e-differential privacy.

Proof. For any Dy, Dy € D™ such that |D; — Dy| < 1, and for any measurable set S C R,

PD1 (S)

< et frES J+(C(D2, 1))
= Jier /1(C(Dy, 7))
< s B (D2 )
T Jeer [y(C(D2y 1)
= *Pp,(9),

where we have used the property that f,(C(Di,r)) < e f,(C(Ds,r)) and f,(C(Dq,r)) <
e fy(C(Dy, 1)) for all r € R.
Therefore, the staircase mechanism in the abstract setting achieves 2e-differential privacy
for any v € [0, 1].
O

In the case that the output range R is the set of real numbers R and the cost function
C(d,r) = |r — q(d)| for some real-valued query function ¢, the above mechanism is reduced

to the staircase mechanism in the continuous setting.

2.10 Connection to the Literature

In this section, we discuss the relations of our results and some directly related works in the

literature, and the implications of our results on other works.

2.10.1 Laplacian Mechanism vs. Staircase Mechanism

The Laplacian mechanism is specified by two parameters, € and the query function sensitivity
A. € and A completely characterize the differential privacy constraint. On the other hand,
the staircase mechanism is specified by three parameters, €, A, and v*, which is determined
by € and the utility function/cost function. For certain classes of utility functions/cost

functions, there are closed-form expressions for the optimal ~*.
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From the two examples given in Section 2.6, we can see that although the Laplacian mech-
anism is not strictly optimal, in the high privacy regime (¢ — 0), the Laplacian mechanism

is asymptotically optimal:

e For the expectation of noise amplitude, the additive gap from the optimal values goes
to0as e — 0,

e For noise power, the additive gap from the optimal values is upper bounded by a

constant as e — 0.

However, in the low privacy regime (e — +00), the multiplicative gap from the optimal
values can be arbitrarily large. We conclude that in the high privacy regime, the Laplacian
mechanism is nearly optimal, while in the low privacy regime, significant improvement can be
achieved by using the staircase mechanism. We plot the multiplicative gain of the staircase
mechanism over the Laplacian mechanism for expectation of noise amplitude and noise power
in Figure 2.7, where Voptimal 1S the optimal (minimum) cost, which is achieved by the staircase
mechanism, and Vi, is the cost of the Laplacian mechanism. We can see that for € ~ 10,
the staircase mechanism has about 15-fold and 23-fold improvement, with noise amplitude
and power, respectively.

Since the staircase mechanism is derived under the same problem setting as the Laplacian
mechanism, the staircase mechanism can be applied wherever the Laplacian mechanism is
used, and it performs strictly better than the Laplacian mechanism (and significantly better

in low privacy scenarios).
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Figure 2.7: Multiplicative Gain of the Staircase Mechanism over the Laplacian Mechanism

2.10.2 Relation to Ghosh et al. [7]

Ghosh, Roughgarden, and Sundararajan [7] show that for a single count query with sensi-

tivity A = 1, for a general class of utility functions, to minimize the expected cost under a
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Bayesian framework the optimal mechanism to preserve differential privacy is the geometric
mechanism, which adds noise with geometric distribution.

We discuss the relations and differences between [7] and our work in the following: Both
[7] and our work are similar in that, given the query output, the cost function only depends
on the additive noise magnitude, and is an increasing function of noise magnitude. On the

other hand, there are two main differences:

e Ghosh et al. [7] works under a Bayesian setting, while ours minimizes the worst-case

cost.

e Ghosh et al. [7] studies a count query where the query output is integer-valued and
bounded, and the sensitivity is unity. In our work, we first study a general real-valued
query function where the query output can take any real value, and then generalize
the result to the discrete setting where query output is integer valued. In both cases,

the sensitivity of query functions can be arbitrary, not restricted to one.

2.10.3 Relation to Gupte and Sundararajan [9]

Gupte and Sundararajan [9] derive the optimal noise probability distributions for a single
count query with sensitivity A = 1 for minimax (risk-averse) users. Their model is the same
as the one in [7] except that their objective function is to minimize the worst-case cost, the
same as our objective. Gupte and Sundararajan [9] show that although for a general class of
cost functions, there is no universally optimal solution to the minimax optimization problem
in [9], each solution (corresponding to different cost functions) can be derived from the same
geometric mechanism by randomly remapping.

As in [7], [9] assumes the query-output is bounded. Our results show that when the query
sensitivity is one, without any boundedness knowledge about the query-output, the optimal

mechanism is to add random noise with geometric distribution to the query output.

2.10.4 Relation to Brenner and Nissim [§]

While [7] shows that for a single count query with sensitivity A = 1, there is a universally
optimal mechanism for a general class of utility functions under a Bayesian framework, Bren-
ner and Nissim [8] show that for general query functions, no universally optimal mechanisms
exist. Indeed, this follows directly from our results: under our optimization framework, the

optimal mechanism is adding noise with staircase-shaped probability distribution which is
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specified by three parameters €, A, and v*, where in general v* depends on the cost func-
tion. Generally, for different cost functions, the optimal noise probability distributions have

staircase-shaped probability density functions specified by different parameters.

2.10.5 Relation to Nissim, Raskhodnikova, and Smith [48]

Nissim, Raskhodnikova, and Smith [48] show that for certain nonlinear query functions,
one can improve the accuracy by adding data-dependent noise calibrated to the smooth
sensitivity of the query function, which is based on the local sensitivity of the query function.
In our model, we use the global sensitivity of the query function only, and assume that the
local sensitivity is the same as the global sensitivity, which holds for a general class of query

functions, e.g., count, sum.

2.10.6 Relation to Hardt and Talwar [4]

Hardt and Talwar [4] study the trade-off between privacy and error for answering a set of
linear queries over a histogram in a differentially private way. The error is defined as the
worst expectation of the £2-norm of the noise. The lower bound given in [4] is Q(e~'dv/d),
where d is the number of linear queries. An immediate consequence of our result is that for
fixed d, when € — 400, an upper bound of @(e_?édd\/a) is achievable by adding independent

staircase-shaped noise with parameter 5 to each component.

2.10.7 Relation to Other Works

Many existing works study how to improve the accuracy for answering more complex queries
under differential privacy, in which the basic building block is the standard Laplacian mech-
anism. For example, Hay et al. [49] show that one can improve the accuracy for a general
class of histogram queries, by exploiting the consistency constraints on the query output,
and Li et al. [6] study how to optimize linear counting queries under differential privacy
by carefully choosing the set of linear queries to be answered. In these works, the error is
measured by the mean squared error of query output estimates, which corresponds to the
variance of the noise added to the query output to preserve differential privacy. In terms
of €, the error bound in these works scales linearly to }2, because of the use of Laplacian
noise. If Laplacian distribution is replaced by staircase distribution in these works, one can
improve the error bound to ©(e~%¢) (for some constant C' which depends on the number of

queries) when € — +oo (corresponding to the low privacy regime).
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CHAPTER 3

THE OPTIMAL MECHANISM IN e-DIFFERENTIAL
PRIVACY: MULTIPLE DIMENSIONAL SETTING

In this chapter, we extend the staircase mechanism from the single dimensional setting to
the multiple dimensional setting. We show that for histogram-like query functions, when
the dimension of the query output is two, the multiple dimensional staircase mechanism is
optimal for the ¢! cost function. We give the problem formulation in Section 3.1, and present
the main result on the opitmality of the multiple dimensional staircase mechanism in Section
3.2. In Section 3.3, we study the asymptotical performance of the optimal mechanism in
the high and low privacy regimes. Comparing the optimal performances with those of the
Laplacian mechanism, we conclude that in the multiple dimensional setting, the Laplacian
mechanism is asymptotically optimal in the high privacy regime, and the staircase mechanism

significantly outperforms the Laplacian mechanism in the low privacy regime.

3.1 Problem Formulation

Consider a multiple dimensional real-valued query function
q:D" =R,

where D" is the domain of the databases, and d is the dimension of the query output. Given

D € D", the query output can be written as

q(D) = (1(D), q2(D), ..., qa(D)),

where ¢;(D) € R, V1 <i <d.

The sensitivity of the query function ¢ is defined as

A£ max lg(D1) — q(D2)lx = Z |¢:(D1) — ¢:(D2)], (3.1)

Dl,DggDn:|D1—D2‘§l

where the maximum is taken over all possible pairs of neighboring database entries D; and
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Dy which differ in at most one element, i.e., one is a proper subset of the other and the larger

database contains just one additional element [3].

Definition 3.1 (e-Differential Privacy [3]). A randomized mechanism IKC gives e-differential

privacy if for all data sets Dy and Do differing in at most one element, and all S C Range(K),
Prik(Dy) € S| < ef PriC(Ds) € S]. (3.2)

The standard approach to preserving the differential privacy is to add noise to the output
of the query function. Let ¢(D) be the value of the query function evaluated at D C D™.

Then the noise-adding mechanism K will output

where X = (X,...,Xy) € R? is the noise added by the mechanism to the output of the
query function.

In the following, we derive the differential privacy constraint on the probability distribu-
tion of X from (3.2).

Pr[K(D;) € 5] < e Pr[lC(Dg) € 5]
< Prig(Dy) + X € 8] <e Pr[g(Dy) + X € 5]
& PriX eSS —q(Dy)] <e Pr[X € S—q(Dy)]
& Pr[X € 9] < e Pr[X € 8"+ q(Dy) — q(Ds)], (3.3)

where S’ £ S — q(D;) = {s — q(Dy)|s € S}.
Since (3.2) holds for all measurable sets S C RY, and ||q(D;) — q(D2)||; < A, from (3.3)

we have
Pr[X € 5’ < e Pr[X € §" +t], (3.4)

for all measurable sets S C R and for all t € R? such that [[t]|; < A.

Consider a cost function £(-) : R? — R which is a function of the added noise X. Our
goal is to minimize the expectation of the cost, subject to the e-differential privacy constraint
(3.4).

More precisely, let P denote the probability distribution of X and let P(S) denote the
probability Pr[X € S]. The optimization problem we study in this work is
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mlnlmlze // L(x1,29,...,2q)P(dr1dzy . .. dxg) (3.5)
R
subject to P(S) < e“P(S +t),V measurable set S C R V||t]|; < A. (3.6)

We solve the above functional optimization problem and derive the optimal noise prob-
ability distribution for £(xz1, ..., z4) = 320, |2], with d = 2.

3.2  Main Result

In this section we state our main result, Theorem 3.1. The detailed proof is given in Appendix
B.1.

We consider the ¢! cost function:
d
L(x1,29,...,74) = Z ||,V (x1, o, . .., q) € RY,

Consider a class of multiple dimensional probability distributions with symmetric and
staircase-shaped probability density functions defined as follows. Given « € [0, 1], define P,
as the probability distribution with probability density function f,(-) defined as

ealy)  [Ixlh € [BA, (k+7)A) for k € N

F09 = e~ Heq(y) x|l € [(k+7)A, (k+ 1)A) for k € N,

where a(7) is the normalization factor to make

// 9 £ (X)dazrdas . .. deg = 1.

Define b £ ¢, and define
+00 ‘
cr 2 i VE €N,
i=0

where by convention 0° is defined as 1. Then the closed-form expression for a(7) is

d!
20T ST (eaw(b+ (1= b)7h)

a(y) =
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Figure 3.1: Multiple Dimensional Staircase-Shaped Probability Density Function for d = 2

It is straightforward to verify that f,(-) is a valid probability density function and P,
satisfies the differential privacy constraint (3.6). Indeed, the probability density function
f+(z) satisfies

f(x) < efy(x+1t),vx € R VE € R st [ty < A,

which implies (3.6).

We plot the probability density function f,(x) in Figure 3.1 for d = 2. It is easy to see
that f,(x) is multiple dimensionally staircase-shaped.

Let SP be the set of all probability distributions which satisfy the differential privacy

constraint (3.6). Our main result is

Theorem 3.1. For d =2 and the cost function L(x) = ||x||;,Vx € R?, then

inf // P(dxidxs) = inf // X)dzydz,.
PeSP ~v€[0,1] R2

Proof. See Appendix B.1. m

Therefore, the optimal noise probability distribution to preserve e-differential privacy
for multiple dimensional real-valued query functions has a multiple dimensionally staircase-

shaped probability density function, which is specified by three parameters ¢, A, and v* =

35



alrgmlnffR2 (21, 22) fr(x)dx1dxs.

~v€[0,1]

3.3 Optimal v* and Asymptotic Analysis

Note that the closed-form expressions for ¢g, ¢; and ¢y are

1
Co = 1-p
b

C1 (1 _ b)Q;

b>+b
Co = A=0)F

For d = 2, we have
1
) = AT e b+ (1=0) —b)2
| 7) +co(b+ (1 —b)7?))
1

202 (2 + iy + 2222

Given the two-dimensional staircase-shaped probability density function f,(x), the cost

18
/ / (1] + Lz2l) fy (20, 22 P(dr i)

(i+y)A (i+1)A '
= Z/ tta(y)e _“dt—i-Z/ tta(y)e”HDeat

:%)Ag(ibz?)z'y—l—&’y +7 —i—bfb’iiz +3z—|—1—327 37,7 —’y))
i=0
- —4a(?A‘3 (3c27 + 317" + cov” + b(3(1 — y)ex + 3(1 = 7%)er + (1 = 7%)co))
_ 2A3cyy + 319”4 07’ 4 b(3(1 — y)ez +3(1 — y?)er + (L —7)eo)
3 ~? + = ,y+ (b+b§
~ 2A¢(1 = b)y" +3ei(1 = b)y? —i— 3ca(1 — b)y + b(co + 3c1 + 3¢3)
-3 P+ 2y + B

72A73_}_13_bb,)/2+32(1b2rl;,y+b1+4b+b

3 Y+ By +

(3.7)

36



4 A——’,—’—

d

02 04 06 02 10

Figure 3.2: The Optimal v* as a Function of b

Therefore, in the two-dimensional setting, the optimal v* is

3(b2+b) 14+4b4b2
fy*:argminﬁy +1 bﬁy i (1 b)27+bz gr
7el0.1 P2+ 257 + B

By setting the derivative of (3.7) to be zero, we use Mathematica to get a closed-form
expression for v*, which is too complicated to show here. We plot v* as a function of b in
Figure 3.2.

The optimal cost V* = V(P,+). We use Mathematica to analyze the asymptotic behavior
of V* as ¢ — 0 and € — 400. Indeed, we have

Corollary 3.2. In the high privacy regime,

2A Ae?
V=2
€ 36\/_

(3),6—>0,

and in the low privacy regime,

2¢

€ Ae 3 2e
= V2Ae 5 + —— +0(e73 ), e = +00.
V2 €

The Laplacian mechanism adds independent Laplacian noise to each component of the

query output, and the cost is %. Therefore, in the high privacy regime, the gap between
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optimal cost and the cost achieved by the Laplacian mechanism goes to zero, as € — 0, and
we conclude the Laplacian mechanism is approximately optimal in the high privacy regime.
However, in the low privacy regime (as € — 400), the optimal cost is proportional to e”s,
while the cost of the Laplacian mechanism is proportional to % We conclude the gap is
significant in the low privacy regime.

It is natural to compare the performance of the optimal multiple dimensional staircase
mechanism and the composite single dimensional staircase mechanism which adds indepen-
dent staircase noise to each component of the query output. If independent staircase noise
is added to each component of the query output, to satisfy the e-differential privacy con-
straint, the parameter of the staircase noise is § instead of ¢, and thus the total cost will be

proportional to e~7, which is worse than the optimal cost ©(e™5).
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CHAPTER 4

THE OPTIMAL MECHANISM IN
(¢, )-DIFFERENTIAL PRIVACY

In this chapter, we study the optimal mechanism in (e, d)-differential privacy for integer-
valued query functions. We show that the (e, §)-differential privacy is a framework not much
more general than the (e, 0)-differential privacy and (0, §)-differential privacy in the context
of /' and ¢? cost functions, i.e., minimum expected noise magnitude and noise power. In
the same context of ¢! and ¢2 cost functions, we show the near-optimality of uniform noise
mechanism and the discrete Laplacian mechanism in the high privacy regime (as (¢,0) —
(0,0))-

We formulate the utility-maximization/cost-minimization under the (e, §)-differential pri-
vacy constraint as a linear programming problem in Section 4.2. In Section 4.3, we study
(0, 0)-differential privacy, and show the near-optimality of the simple uniform noise mech-
anism. In Section 4.4, we study the optimal mechanisms in (e, d)-differential privacy, and
show the optimality of the uniform noise mechanism and the Laplacian mechanism in the
regime (€,0) — (0,0) in the context of ¢! and ¢* cost functions. In Section 4.5, we extend the

results to the multiple dimensional setting where the query output is a vector of integers.

4.1 Introduction

(€, 9)-differential privacy is a relaxed notion of privacy, compared to the standard e-differential

privacy introduced in [11]. (e, d)-differential privacy includes as special cases:

e (¢,0)-differential privacy. In this standard setting, the optimal mechanism for a general
cost minimization framework is the staircase mechanism as shown in [50]. In the high

privacy regime, the standard discrete Laplacian mechanism also performs well.

e (0,9)-differential privacy. This setting requires that the total variation of the condi-
tional probability distributions of the query output for neighboring datasets should be
bounded by 0. We show that the uniform noise distribution is near-optimal in the

(0, 0)-differential privacy setting for a general class of cost functions.
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While the (e, d)-differential privacy setting is more general than the two special cases —
(€,0) and (0, 0)-differential privacy — our main result in this chapter is to show that it is only
more general by very little; this is done in the context of /! and ¢? cost functions. We show
the near-optimality of uniform noise mechanism and discrete Laplacian mechanisms in the
high privacy regime (as (¢,0) — (0,0)) for £! and ¢* cost functions.

The near-optimality of the two mechanisms (designed for the special cases of (¢,0) and
(0,0) differential privacy settings) is proved by demonstrating a uniform bound on the ratio
between the costs of these two mechanisms and that of the optimal cost in the (¢,d) differ-
ential privacy setting in the high privacy regime, i.e., as (¢,0) — (0,0) for ¢! and ¢* cost

functions.

4.1.1 Summary of Our Results

We summarize our results in the following. Let Vg denote the lower bound we derived for
the cost under the differential privacy constraint. Let VUL AP and Vl}%nform denote the upper
bounds for the cost achieved by the discrete Laplacian mechanism and the uniform noise

mechanism. We show that
e For integer-valued query functions,
— for (0, d)-differential privacy with the global sensitivity A = 1, the uniform noise

mechanism is optimal for all generic cost funtions,

— for (0, 0)-differential privacy with arbitrary global sensitivity A,

uniform
Vi

lim =1

6—0 VL B
for /! and ¢ cost functions,

— for (e, d)-differential privacy with £' and ¢? cost functions,

) La i
mln(VUB p7 V(}lfral 1form)

1m
(¢,6)—(0,0) VLB

<C

for some numerical constant C'.
e For multiple dimensional integer-valued query functions,

— for (0, ¢)-differential privacy with the global sensitivity A = 1, the multiple di-

mensional uniform noise mechanism is optimal for ¢! and ¢? cost funtions,
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. o . : L : yuniform
— for (0, §)-differential privacy with arbitrary global sensitivity A, lims_,o 26— =

VLB
1 for ¢* and ¢? cost functions,

— for (e, §)-differential privacy with ¢! and ¢? cost functions,

) La i
L min(VEP, vpiform)

<C
(€,6)—(0,0) Vis

for some numerical constant C', which is independent of the dimension of the

query function.

4.2  Problem Formulation

Consider an integer-valued query function
q:D" —7Z,

where D" is the domain of the databases.

The sensitivity of the query function ¢ is defined as

AE max Dy) —q(D 4.1

pypycinax o a(D) = (D), (4.1)
where the maximum is taken over all possible pairs of neighboring database entries D; and
Dy which differ in at most one element, i.e., one is a proper subset of the other and the larger
database contains just one additional element [3]. Clearly, A is an integer in this discrete

setting.

Definition 4.1 ((¢, 0)-Differential Privacy [18]). A randomized mechanism K gives e-differential
privacy if for all data sets Dy and Do differing in at most one element, and all S C Range(K),

Pri(Dy) € S| < exp(e) Prik(Ds) € S] + 4. (4.2)

4.2.1 Operational Meaning of (e, §)-Differential Privacy in the Context of
Hypothesis Testing

As shown by [10], one can interpret the differential privacy constraint (4.2) in the context
of hypothesis testing in terms of false alarm probability and missing detection probability.

Indeed, consider a binary hypothesis testing problem over two neighboring datasets, Hy : D
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versus H; : Dy, where an individual’s record is in D, only. Given a decision rule, let S be the
decision region such that when the released output lies in S, H; will be rejected, and when
the released output lies in S (the complement of S), Hy will be rejected. The false-alarm

probability Pr and the missing-detection probability Py;p can be written as

Ppy = P(K(Dy) € S9),
Pyup = P(K(D,) € S).

Therefore, from (4.2) we get
1— Prpg <e‘Pyp+9.
Thus
ePyp+ Pra>1-0.
Switch D; and D, in (4.2), and we get
Pr[K(D3) € S] < exp(e) Pr[K(D;) € S] + 0.
Therefore,
1 — Pyp < e Ppy+ 96,
and thus
Pyp +ePpy>1—46.
In conclusion, we have

e“Pyp+ Prpa>1—0,
Pyp 4 e Prpy > 1—0.

The (e, d§)-differential privacy constraint implies that in the context of hypothesis testing,
Pr4 and Py;p cannot both be too small.
We plot the regions of Pry and Pyp under (e, 0)-differential privacy, and under two

special cases: (€,0) and (0, §)-differential privacy, in Figure 4.1.
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Figure 4.1: Regions of Pyp and Pry in (€, ), (¢,0) and (0, §)-Differential Privacy

4.2.2  Cost-Minimization/Utility-Maximization Formulation

The standard approach to preserving the differential privacy is to add noise to the output
of query function. Let ¢(D) be the value of the query function evaluated at D C D™, the

noise-adding mechanism K will output
K(D) =q(D) + X,

where X is the noise added by the mechanism to the output of query function. To make the
output of the mechanism be valid, i.e., ¢(D) + X € Z, X can only take integer values.

Let P be the probability mass function of the noise X, and let P; denote Pr[X = i|. For
a set S C Z, denote Pr[X € S] by Ps.

In the following we derive the differential privacy constraint on the probability distribu-
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tion of X from (4.2).

Pr[K(D;) € 5] < exp(e) Pr[(Ds) € S|+ 4
< Pr[g(Dy) + X € S] < exp(e) Prlg(Ds) + X € S] + +0
< Ps—q(D1) < exp(€) Ps—q(py) +0
)

-~ PS’ S exple 7)S"-i-q(Dl)—q(DQ) + 67 (43)

where S’ £ S — q(D;) = {s — q(D)|s € S}.
Since (4.2) holds for any set S C Z, and |¢(D;) — q(D2)| < A, from (4.3), we have

Ps < exp(e) Psya + 6, (4.4)

for any set S C Z and for all |d| < A.
Consider a cost function £(-) : Z — R, which is a function of the added noise X. Our goal

is to minimize the expectation of the cost subject to the (e, §)-differential privacy constraint
(4.4):

subject to Ps < exp(€) Psiq+ 0,VS C Z,d € Z,|d| < |A|.

We restrict our attention to the scenario when the cost function L£(k) is symmetric
(around k& = 0) and monotonically increasing for £ > 0. Furthermore, without loss of
generality, we assume £(0) = 0. Using the same argument in Lemma 28 in [50], we only

need to consider symmetric noise probability distributions.

4.3 (0, 6)-Differential Privacy

We first consider the simple case when ¢ = 0, i.e., (0,0)-differential privacy. The (0,0)-
differential privacy constraint requires that the total variation of the conditional probability
distributions of the query output for neighboring datasets should be bounded by 4.

In the differential privacy constraint (4.4), by choosing the subset S = Sy, := {¢: ¢ > k}
for k € N and d = A, we see that the noise probability distribution P must satisfy the
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constraints

A-1

> Prpe <6, VkeEN. (4.5)
/=0

431 A=1

In the special case A = 1, the constraints in (4.5) are particularly simple:
pe < 0; VE2>0.

For symmetric cost functions £(k) that are monotonically increasing in k£ > 0, we can now

readily argue that the uniform probability distribution is optimal.

1

To avoid integer rounding issues, assume o5

is an integer.

Theorem 4.1. If A =1, then
-1
V=Y 6L(k),
k:_zlé

and the optimal noise probability distribution is

1 1
§ —k<k<i-1

P = (4.6)

0 otherwise

4.3.2 General Lower Bound for A > 2

We now turn to understanding near-optimal (0, d) privacy mechanisms in terms of minimizing
the expected loss when the sensitivity A > 2.
Recall that in (0, §)-differential privacy, the minimum cost V* is the result of the following

optimization problem, which is a linear program:

“+oo
V* := min Z L(k)Py,

k=—o00

such that p, >0 VkEe N
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Ps < Pgirg+0,VS CZ,d € Z,|d| <|A|. (4.7)

Since L£(+) is a symmetric function, we can assume P is a symmetric probability distri-
bution. In addition, we relax the constraint (4.7) by choosing d = A and S = Sy for k € N.
Then we get a relaxed linear program, the solution of which is a lower bound for V*. More

precisely,

k=1
such that P, >0 Vke N

Py 1

o > 4.

>+t P> (4.9)

k=1

A-1

—Y Peye>-6, VkeN (4.10)
=0

To avoid integer rounding issues, assume % is a positive integer.

Theorem 4.2. If

1

A 20
Ay AN s ‘
L0+ 55) =2 | L(1) +;(c(1 +iA) — L(iA)) |, (4.11)
then
-1
V* > Vip =26 ) L(1+iA). (4.12)
i=0
Proof. See Appendix C.1. m
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4.3.3 Uniform Noise Mechanism

Consider the noise with the uniform probability distribution:

A A
VoA<p<a

8
P, =<2 (4.13)
0

otherwise

It is readily verified that this noise probability distribution satisfies the (0, 0) differential

privacy constraint. Therefore, an upper bound for V* is

Theorem 4.3.

-1
) 6 A
V*<Vup ;:1 Aﬁ(z) + <L

SL(5): (4.14)

4.3.4 Comparison of Vg and Vg

We first apply the lower bound (4.12) and upper bound (4.14) to the ¢! and ¢? cost functions,
i.e., L(i) = |i| and £(:) = %, in which V* corresponds to the minimum expected noise
amplitude and minimum noise power, respectively.

Note that in the case L£(i) = |i|, the condition (4.11) in Theorem 4.2 is

A
— > . .
55 = +1 (4.15)

ST

When A > 3, (4.11) holds.

Corollary 4.4. For the cost function L(i) = ||,

A A

——41-=

VB 45+ 5
A
VUB_4_57

and thus the additive gap
A
Vi —Vip = 5 1

s a constant independent of §.
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In the case L£(i) = i*, the condition (4.11) in Theorem 4.2 is

A A 1
(G -U=5+L (4.16)

When A > 3, (4.16) holds.

Corollary 4.5. For the cost function L(i) = i?,

Vip = é{; —i—;+A(2i5—1)+%2+1,
A? 1
Vup = 52 T 6
and thus the multiplicative gap
Proof. See Appendix C.2. m

Corollary 4.6. Given a positive integer m, consider the cost function L(i) = |i|™. Then

. Vuns
lim —
0—0 VLB

= 1.

. . . . . m—+1
Proof. By induction, it is easy to show that » i | i™ = ©("—), and

Zi:l ! =1.

lim
n—t+oo !
m+1
Therefore,
5 =1 om 5 A™
| Vus | 28 2Lt 1+ R eym
I 1
s=—1 .
6—0 VLB 6—0 2(5 izio (I—I—ZA)m
Am+1
2£ (25)m+1
:(ISim A E”H =
—0 m35)"
25A m—+1
=1.

O

For general cost functions, we have the following bound on the multiplicative gap between

the lower bound and upper bound.
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Corollary 4.7. Given a cost function L(-) satisfying

L(k)
= <
W AxT) =Y

for some integer T' € N, and some positive number C' € R, then

. Vus 1

Proof. See Appendix C.3. O

4.4 (e, d)-Differential Privacy

Recall that since L£(-) is a symmetric function, without loss of generality, we can restrict

ourselves to symmetric noise probability distributions, i.e.,
Pr = P_k,\V//{? € 7. (4.17)

The differential privacy constraint in (4.4) can be understood in some detail by choosing
the subset S = Si := {¢: £ > k} for k € N. In this case we see that the noise probability

distribution must satisfy the following constraints. For k = 0 and d = A,
Ps, < e“Pg, + 9. (4.18)

By using the symmetry condition in (4.17) and the fact that 3_,°°_ P, = 1, from (4.18)
we get
A-1

+e > P <+

(=1

1+e€f e —1

2

Po

For k =1 and d = A, we have
Psl S 66PSA+1 + 57

and thus

e —1

2

e —1

A
+€€Z'Pg§5+ 5 .
=1

Po
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For general k > 2 and d = A, we have
Ps, < ePgs,,, + 90,

and thus

k+A-1

7306 L e ZPmLe Z Pg<5+—

4.4.1 Lower Bound

By restricting the set S in (4.4) to be Sg := {¢: ¢ > k} for k € Z and restricting d to be A,

we get the following relaxed linear program, the solution of which is a lower bound for V*:

VLB ‘= min 22£<k)7)k

k=1

such that P, >0 Vke N

Po 1
— > — 4.19
St P>y (4.19)
k=1
Pte AZIP <o+ (4.20)
6 .
2 ¥ 2
ee_ ee_
Po + ¢ Zm <6+ (4.21)
k=1
o i+A—1 e — 1
Po (ef — 1) ZPk—l—e Zpk<5+ Vi > 2. (4.22)
Define
aé(;_i_eefl
ec
b& e

To avoid integer rounding issues, assume that there exists an integer n such that
n—1

Zabk =

k=0
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Theorem 4.8. If

n—1

D e 2L(IA) — L(1+ (i — 1)A) — L(1+iA)) > L(1),

i=1
then we have

n—1 e‘—1
5+_2

V*>Vip =2
66

e L1+ kA). (4.23)

k=0

Proof. See Appendix C.4. m

4.4.2  Upper Bound: the Uniform Noise Mechanism and the Discrete
Laplacian Mechanism

Since (0, §)-differential privacy implies (e, §)-differential privacy, we can use the uniform noise
mechanism with noise probability distribution defined in (4.13) to preserve (e, §)-differential

privacy, and the corresponding upper bound is

Theorem 4.9. For (¢,0)-differential privacy, we have

A

. 26 A
e < ylmiform _ o > %ﬁ(z) + 25(2—6). (4.24)

i=1

On the other hand, if we simply ignore the parameter § (i.e., set § = 0), we can use
a discrete variant of Laplacian distribution to satisfy the (e,0)-differential privacy, which
implies (¢, d)-differential privacy.

More precisely, define A £ e™ 5.
Theorem 4.10. The probability distribution P with

al=A k
2- "\ vkez
pk 1+)\ ) S )

satisfies the (e, §)-differential privacy constraint, and the corresonding cost is

< ©X1-2A
=2y —A\L(k).
2 peE) =2 NLE)

k=—00
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Corollary 4.11.

+oo
v v e oy I A (4.25)
<vipP a2y 15 . .
k=1

4.4.3 Comparison of Lower Bound and Upper Bound

uniform
Vi and

In this section, we compare the lower bound (4.23) and the upper bounds
VULBap for (e,d)-differential privacy for the ¢! and ¢? cost functions, i.e., £(i) = [i| and
L(i) = i?, in which V* corresponds to the minimum expected noise amplitude and minimum
noise power, respectively. We show that the multiplicative gap between the lower bound and

upper bound is bounded by a constant as (e,d) — (0,0).

€ < 6 Regime

We first compare the gap between the lower bound V75 and the upper bound V[}%liform in

the regime ¢ < 9 as 6 — 0.

Corollary 4.12. For the cost function L(k) = |k|, in the regime € < §, we have

uniform 1
lim -2 < ~ 1.32
51—I>I(l) VLB - 4(1 — 210g %)
Proof. See Appendix C.5. n

Corollary 4.13. For the cost function L(k) = k%, in the regime € < &, we have

uniform

lim Y8 < 1 ~ §
50 Vpp T 12(2—4log(3) — 2(log(3))?) 3
Proof. See Appendix C.6. n

0 < € Regime

We then compare the gap between the lower bound V7 g and the upper bound VUL Bap in the
regime 0 < € as € — 0.
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Corollary 4.14. For the cost function L(k) = |k|, in the regime 6 < €, we have

1
lim 22— < - ~ 5.29.
e—0 Vip 1 —2log 3

Proof. See Appendix C.7. O

Corollary 4.15. For the cost function L(k) = k%, in the regime ¢ < &, we have

2
) s ~ 40.
5230 Vis ~ (2—4log(3) — 2(log(3))?)

Proof. See Appendix C.8. O

4.5 (e, 0)-Differential Privacy in the Multiple Dimensional Setting

In this section we consider the (¢, d)-differential privacy in the multiple dimensional setting,
where the query output has multiple components and the global sensitivity A is defined as
the maximum ¢! norm of the difference of the query outputs over two neighboring datasets.

Let d be the dimension of the query output. Hence, the query output ¢(D) € Z%. Let
P be the probability mass function of the additive noise over the domain Z?¢. Then the

(€, 0)-differential privacy constraint on P in the multiple dimensional setting is that
Py < Poypy +6,¥S C 2% v € 72, ||v|, < A. (4.26)

Consider a cost function £(-) : Z¢ — R, which is a function of the added noise X.
Our goal is to minimize the expectation of the cost subject to the (¢, d)-differential privacy
constraint (4.26):

subject to Pg < Pyivy + 0,VS C Z% v € 74, vl < A.

4.5.1 (0,6)-Differential Privacy

We first consider the simple case when € = 0, i.e., (0,0)-differential privacy. The (0,)-
differential privacy constraint requires that the total variation of the conditional probability

distributions of the query output for neighboring datasets should be bounded by .
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In the differential privacy constraint (4.26), by choosing the subset

S =S = {(iy,da,...,1q) € Z | iy > k}

for k € N, m € {1,2,...,d}, and choosing v such that only one compoment is A and all

other components are zero, we see that the noise probability distribution P must satisfy the

constraints

> Plir,is, ... i) <6, VkeNVme{l,2,....d}

(41,25058q) ELL:k<ip <k+A—1

To avoid integer-rounding issues, we assume that % is an integer.

Lower Bound on V*

We relax the constraint (4.26) by choosing S to be S;* and choosing v such that only one

compoment is A and all other components are zero. Then we get a relaxed linear program,

the solution of which is a lower bound for V*. More precisely,

V*>Vip:=min Y PHLE)
iezd

such that P(i) >0 Vic z¢
> P)>1

iezd
> Plir, iz, - -, ig) <6,

(i1,i2,000180) €Lk i <k+A—1
Theorem 4.16. In the case L(i) = ||i||1, Vi € Z¢, we have

AN A—1
>22 27
Vie = 45 9

(4.27)

Vk e N,vm e {1,2,...,d}.

Proof. See Appendix C.9. m
Theorem 4.17. In the case L(i) = |[il|3 = Y20 _, i, Vi= (i1,...,ia) € Z%, we have
dA? 1 dA? 1 - A dA?
> — ——1 .
Vin 2 o PR V%5 T4+
Proof. See Appendix C.10. O]
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Uniform Noise Mechanism in the Multiple Dimensional Setting

Consider the noise with the uniform probability distribution:

d .
5 5 <in<s-1VYme{l,2,...,d}

Pliv,ia, ... iq) = (4.28)

0 otherwise

It is readily verified that this noise probability distribution satisfies the (0, 0) differential

privacy constraint (4.26). Therefore, an upper bound for V* is

Theorem 4.18.

. 6 .
V< Vyp 2 Z F,C(zl,z%...,zd). (4.29)
(i1 igyyiq) €L | — 5 <ipn <5 —1Vme{1,2,...d}
Corollary 4.19. In the case L(i) = ||i||1, Vi € Z¢, we have
dA
Vo = —.
UB 15
Proof.
5(1
Vg = > ALl iz, i)
(i1 iy i) €L | — 55 <ipn<5x—1Yme{1,2,....d}
£-1 5-1 5
= ~allin] =+ -+ [ial)
__ A -ZA Ad
n="35 =735
%71 %71 5d
=d Z Adw
__ A . A
11==735 ld=—1355
d—1 %_1 d
AN\ or
:d(g) .ZA F|21|
11:—?6
d—1 A\ A A(A
(AN (O a5)as | sl — 1)
0 Ad 2 2
B dA
40
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Corollary 4.20. In the case L(i) = [[i|]3 £ 320 i, Vi= (i1, ...,ia) € Z%, we have

dA?  d
Vb= —= + =
UB = 1252 " 6
Proof.
5d
Vg = Z Eﬁ(ilai% ,id)
(i1,i2,0010a) €L | — 5% i <5 —1¥me{1,2,...,d}

I
A\
|Q'z
u IsH
—~
=
S
o
+
+
=
QL
o
S—

4 (A) L (%(1 PG Y (G -DEE - 1))
_|_

Comparison of Lower Bound and Upper Bound for the ¢! Cost Function

Corollary 4.21. For the cost function L(i) = |i||;,

Vip > % - %d,
Vug = %,
and thus the additive gap
A—-1

Vup — Vi < Td’

which is a constant independent of 9.

In the case that A = 1, the additive gap %d is zero, and thus Vg = Vyp.
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Corollary 4.22. For the cost function L(i) = ||il|1, if A =1, then

dA
*:V = = —
Vv UB VLB 45

and thus the uniform noise mechanism is optimal in this setting.
Corollary 4.23. For the cost function L(i) = ||i]|3,

dA? 1 dA? . 1-A dA?

Visz ot x- U T4+
dA?  d
Vo = 155 T 5
and thus
Vus
PR RTANES
In the case that A =1,
d d
Vi > 1252 + 6 Vus,

and thus VLB = VUB'
Corollary 4.24. For the cost function L(i) = ||i||3, if A =1, then

d d
V' =Vin=Vin— ¢
uB = VLB 12(52+6’

and thus the uniform noise mechanism is optimal in this setting.

4.5.2 (e, 6)-Differential Privacy

The (€, 0)-differential privacy constraint on the probability mass function P in the multiple

dimensional setting is that
Ps < €Psiy +6,¥S C Z% v e Z% ||v|i < A.

We relax this constraint by choosing S to be S} and choosing v such that only one
compoment is A and all other components are zero. Then we get a relaxed linear program,

the solution of which is a lower bound for V*. More precisely,
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V*>Vip:=min Y PHLA) (4.30)

such that P(i) >0 Vie Z¢

> PG)>1

iezd

Vk e NVm e {1,2,...,d},
> Pliy,ig, ... iq) — (e —1) > Plir, i, ... iq) < 6.

(i1,82,00y50) €LE:k<i <k+A—1 (i1,i2,0eriq) €L iy >k4-A

We are interested in characterizing V* for the ¢! and ¢? cost functions in the high privacy

regime when (¢,0) — (0,0).

Lower Bound for the ¢! Cost Function

The dual linear program of (4.30) for the ¢! cost function £(i) = ||i||; is that

VLB = max M—é(zyg)_'—zyg)—i_—i_zyfj))

=/ i9€7Z i4CZ

such that y§j>,y§j),...,y§j>zo Viy €Z,ig €L, ... i1q €L

p— >yl + Zyzl

i1€[k17A+1,k‘1] i1<k1—
E : (d § : (d)
— e — yld e — 1 y
1q€[kg—A+1,kq) tq<kg—

< \ky| + k| + -+ |ka|, V(ko, ... kg) € Z°.

Given the parameters (e, d), let 5 = max(e, §). Since (3, 5)-differential privacy is a relaxed
version of (e, §)-differential privacy, in the above dual program we can replace both e and §

by (3, and the optimal value of the objective function will still be a lower bound of V*. More

precisely,

V*>V/g:=max pu— 5<Zy(1)+zyi(22)+___+zyi(j)>

1EZ 12 (=Y idEZ
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such that yfll),yi(f),...,yz >0,V € Z, ZQGZ Lilg €L

[ — Z y(l) Z y(l)
i1

ile[k’l—A-‘rl,kl] 21<k31
N (d)
yl(i yzd
ta€[ka—A+1,kq] Zd<kd

< ’k1’ + ’k2| + o+ ’kd|7v(k17"'7kd) € Zd'

Theorem 4.25. For the (* cost function,

/

9
lim > log — ~ 0.1178.

max(e,8)—0

dA
max(e,d)

Proof. See Appendix C.11.

Similarly, for the ¢2 cost function, we have the lower bound

V' > Vg =max - f (Z yD Yy ZyE?)

1EZ 12€EZ €L

such that ygll),yg),...,yi(j) >0,V € Z z'g €ZL,...,10 €L

D D e Z y!

ile[kl—A+1,k1] ’51<kJ1
e ()
Y, + yzd
ide[kd—A—Fl,kd} Zd<kd

< ’k1|2 + ‘k2‘2 +ooee 4+ ’kd‘27v(kla . '>kd) € Zd'

Theorem 4.26. For the (* cost function,

Vi
lim —£2 > 0.0177.
max(e,8)—0 5

Proof. See Appendix C.12.
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Upper Bounds: the Uniform Noise Mechanism and the Discrete Laplacian Mechanism

Since (0, 0)-differential privacy implies (e, 0)-differential privacy and we have shown that the
uniform noise mechanism defined in (4.28) satisfies (0, d)-differential privacy, an upper bound

for V* for the ¢! cost function is

: dA

v* < yupiform _ 2 (4.31)
46

by Corollary 4.19.

In addition, (e,0)-differential privacy also implies (¢, §)-differential privacy, and the dis-
crete Laplacian mechanism satisfies (e, 0)-differential privacy. Consider the discrete Lapla-
cian mechanism in the multiple dimensional setting with probability mass function P defined
as

1—A

d
P(ib i27 . aid) = (H—)\) )\|i1|+|i2|+"'+‘id|,\V/(il, o aid) c Zd,

A €
where A = e &a.

The corresponding cost achieved by the Laplacian mechanism for the ¢! cost function is

Lap 1= A\ it 1 . .
VP =3 (F) A il )
(i1,62,...iq) €24
2d\
1— )2
2de” &

€

1—e2a

— 0(—), (4.32)

€

as € — 0.

Similarly, for the £? cost function, we have

: dA?  d
V(}léuform o

e e
and
La 1-A I i1 |+|io|4--+]s . . .
VP = X () Al )
(11,12 ..... ld)EZd
o 2dA
(1= )2
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Comparison of Lower Bound and Upper Bounds

Compare the lower bound in Theorem 4.25 and the upper bounds (4.31) and (4.32), and we
conclude that for the ¢! cost function, the multiplicative gap between the upper bound and

lower bound is upper bounded by a constant as (¢,d) — (0,0). More precisely,

Corollary 4.27. For the (* cost function, we have

V! < V* < min(v,edorm i, Lapy

and as (e,0) — (0,0),

) uniform - ,La
lim mln(VUB / Vg p)

Similarly, for the ¢2 cost function, we have

Corollary 4.28. For the (? cost function, we have

V! < V* < min(v,edorm i Lapy

and as (e,6) — (0,0),

Vuniform VLap) 9

min UB » YUB

~ 113.
(€:0)—(0,0) Vg = 0.0177

61



CHAPTER 5

CONCLUSION

Differential privacy is a framework to quantify to what extent individual privacy in a statis-
tical database is preserved while releasing useful aggregate information about the database.
The purpose of this dissertation is to delve into fundamental limits of data privacy and derive
the optimal mechanisms to preserve differential privacy in the most basic problem settings,
as opposed to doing privacy for each and every application setting as in most works in the

literature. The main contributions of this dissertation can be summarized as follows.

o c-differential privacy in the single dimensional setting:

Given the differential privacy constraint, we derive the optimal differentially private
mechanism for a single real-valued query function under a general utility-maximization
(or cost-minimization) framework. The class of noise probability distributions in the
optimal mechanism has staircase-shaped probability density functions which are sym-
metric (around the origin), monotonically decreasing, and geometrically decaying. The
staircase mechanism can be viewed as a geometric mixture of uniform probability dis-
tributions, providing a simple algorithmic description for the mechanism. Furthermore,
the staircase mechanism naturally generalizes to discrete query output settings as well
as more abstract settings. We show that adding query-output independent noise with
the staircase distribution is optimal among all randomized mechanisms (subject to a

mild technical condition) that preserve differential privacy.

We explicitly derive the optimal noise probability distributions with minimum expec-
tation of noise amplitude and power. Comparing the optimal performances with those
of the Laplacian mechanism, we show that in the high privacy regime, the Laplacian
mechanism is asymptotically optimal; in the low privacy regime, the staircase mecha-
nism significantly outperforms the Laplacian mechanism. We conclude that the gains

are more pronounced in the low privacy regime.

o c-differential privacy in the multiple dimensional setting:

We extend the staircase mechanism from the single dimensional setting to the multi-

ple dimensional setting. We show that for histogram-like query functions, when the
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dimension of query output is two, the multiple dimensional staircase mechanism is
optimal for the ¢! cost function. We explicitly derive the parameter of the optimal
two-dimensional staircase mechanism, and study the asymptotical performance of the
optimal mechanism in the high and low privacy regimes. Comparing the optimal per-
formances with those of the usual Laplacian mechanisms, we show that in the high
privacy regime (e is small), the Laplacian mechanism is asymptotically optimal as
¢ — 0; in the low privacy regime (e is large), the optimal cost is ©(e~5), while the
cost of the Laplacian mechanism is %. We conclude that the gains of the staircase

mechanism are more pronounced in the low privacy regime.

(€,9)-differential privacy:

We study the optimal mechanisms in (e, 0)-differential privacy for integer-valued query
functions under a utility-maximization/cost-minimization framework. We show that
the (e, d)-differential privacy is a framework not much more general than the (e, 0)-
differential privacy and (0, §)-differential privacy in the context of ¢* and ¢* cost func-
tions, i.e., minimum expected noise magnitude and noise power. In the same context of
¢' and ¢2 cost functions, we show the near-optimality of the uniform noise mechanism

and the discrete Laplacian mechanism in the high privacy regime (as (¢,0) — (0,0)).
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Theorem 2.3

We first give two lemmas on the properties of {P;};cr which satisfies (2.7).

Lemma A.1. Given {P;}ier satisfying (2.7), and given any scalar o € R, consider the
family of noise probability measures {Pt(a)}teR defined by

P L Ppya, Wt €R. (A1)
Then {Pt(a)}teR also satisfies the differential privacy constraint, i.e., ¥|t; — ta| < A,
PI(S) < e P (S + 11 —t). (A.2)

Furthermore, {P;}1er and {Pt(a)}teR have the same cost, i.e.,

sup /G]R L(z)P;(dx) = sup /ER L(z)P (dz). (A.3)

teR teR

Proof. Since by definition the family of probability measures {Pt(a)}teR is a shifted version
of {P;}ier, (A.3) holds.
Next we show that {Pt(a)}teR satisfies (A.2). Given any ti,ty such that |t; — t5] < A,

then for any measurable set S C R, we have

P = PryalS)
< ePraalS+ (t1+a) — (t2+ «))
= ePria(S+1t1 —t2)
= eP(S + 1) — t).

This completes the proof. n
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Next we show that given a collection of families of probability measures each of which
satisfies the differential privacy constraint (2.7), we can take a convex combination of them
to construct a new family of probability measures satisfying (2.7) and the new cost is not

worse. More precisely,

Lemma A.2. Given a collection of finite number of families of probability measures {Pt[i]}teR
(i€{1,2,3,...,n}), such that for each i, {P"}ier satisfies (2.7) and

sup/ RE(:U)PF}(dx) =Q, Vi,

teR

for some real number Q, consider the family of probability measures {U;}er defined by

w2 PVt ER,

i=1

i.e., for any measurable set S C R,

where ¢; > 0, and Z?ﬂ ¢ = 1.

Then {D; }ier also satisfies the differential privacy constraint (2.7), and

sup / L@ < Q

teR

Proof. First we show that {7 };cr also satisfies the differential privacy constraint (2.7). In-
deed, V|t; — t5] < A, V measurable set S C R,

() fj PS)

<Zcz Pi(S + 1 — ta)
=€ I/tQ(S—Ftl —tg)

Next we show that the cost of {7 }icr is no bigger than Q. Indeed, for any ¢ € R,

/L Vo (dx) = ch/ L(z [Z]
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n
< Z cQ
i=1

Therefore,

_— / L@ld) < Q

teR
O

Applying Lemma A.1 and Lemma A.2, we can prove the conjecture under the assumption

that the family of probability measures {P,;};cr is piecewise constant and periodic over t.

Proof of Theorem 2.3. We first prove that for any family of probability measures {P;}icr €
K1, there exists a new family of probability measures {ﬁt}te]g € Kr,, such that P, = P for
all t € R, i.e., the added noise is independent of query output ¢, and

sup/ L(x ”Ptdx <sup/ L(x)P(dx).

teR teR

i L
Indeed, consider the collection of probability measures {Pt( ”)}teR fori € {0,1,2,...,n—
T
1}, where {P{*} is defined in (A.1). Due to Lemma A.1, for all i, {Pt(ln)}te]R satisfies the
differential privacy constraint (2.7), and the cost is the same as the cost of {P;}icr.
Define

n—1
~ 1 Z‘I)
P = E P, .
L= npt
=0
Then due to Lemma A.2, {P;}icr satisfies (2.7), and the cost of is not worse, i.e.,

sup/ L(x Ptd:c <sup/ L(x)P(dx).

teR teR

Furthermore, since {P;}ier € K1, for any ¢ € R,
n—1 n—1
16T 1
e —P n’s — _'P

Hence, P, is independent of ¢.
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Therefore, among the collection of probability measures in Ur~g Up>1 K7, to minimize
the cost we only need to consider the families of noise probability measures which are inde-
pendent of the query output ¢t. Then due to Theorem 2.4, the staircase mechanism is optimal
among all query-output independent noise-adding mechanisms. This completes the proof of
Theorem 2.3. [

A.2 Proof of Theorem 2.4

In this section, we give detailed and rigorous proof of Theorem 2.4.

A.2.1 Outline of Proof

The key idea of the proof is to use a sequence of probability distributions with piecewise
constant probability density functions to approximate any probability distribution satisfying
the differential privacy constraint (2.11). The proof consists of 8 steps in total, and in
each step we narrow down the set of probability distributions where the optimal probability

distribution should lie:

e Step 1 proves that we only need to consider symmetric probability distributions.

e Step 2 and Step 3 prove that we only need to consider probability distributions which

have symmetric and piecewise constant probability density functions.

e Step 4 proves that we only need to consider those symmetric and piecewise constant

probability density functions which are monotonically decreasing for x > 0.
e Step 5 proves that the optimal probability density function should periodically decay.

e Step 6, Step 7, and Step 8 prove that the optimal probability density function over the
interval [0, A) is a step function, and they conclude the proof of Theorem 2.4.

A2.2 Stepl

Define

* A -
Vie inf / _ L(@)P(ds).
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Our goal is to prove that V* = inf [ o L(x)P,(dx).
7€[0,1]

If V* = 400, then due to the definition of V*, we have

inf L(x)P,(dx) > V* = +o0,

Ve [071] x€eR

and thus inf,¢p fIGRE(x) = V* = 400. So we only need to consider the case V* < +o0,
i.e., V* is finite. Therefore, in the rest of the proof, we assume V* is finite.

First, we prove that we only need to consider symmetric probability measures.
Lemma A.3. Given P € SP, define a symmetric probability distribution Psyn, as

P(S) +P(=5)
2

Psym(S) = .V measurable set S C R, (A.4)

where the set —S = {—x | v € S}. Then Poym € SP, i.e., Py satisfies the differential

privacy constraint (2.11), and
/ L(2)Poym(d) = / L(2)P(dx).
z€R zeR

Proof. It is easy to verify that Pqyr, is a valid probability distribution. Due to the definition
of Py in (A.4), we have

P(S) +P(=5)
2

Poym () = = Poym(=5),

for any measurable set S C R. Thus, Psym is a symmetric probability distribution.
Next, we show that Psy,, satisfies (2.11). Indeed, V measurable set S C R and V|d| < A,

Pron(S) = P(S) +273(—S)
< e“P(S +d) +2€€P(—S —d) (A5)
_ eP(S+d)+eP(—(S+d))
2
= € Psym(S + d),

where in (A.5) we use the facts P(S) < e“P(S+d) and P(—S5) < eP(—=S —d).

Lastly, since L£(x) is symmetric,

/ _L)P(dr) = / . £) + L) g

2
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- / L) P,

Therefore, if we define
SPsym = {Psym|P € SP},

due to Lemma A.3,

Lemma A .4.

Vv :Peggsym - L(x)P(dx).

A.2.3 Step 2

Next we prove that for any probability distribution P satisfying differential privacy constraint
(2.11), the probability Pr(X =z) = 0,Vx € R, and P([y, z]) # 0 for any y < z € R.

Lemma A.5. VP € SP,Vz € R, P({z}) =0. And, for anyy < z € R, P([y, z]) # 0.

Proof. Given P € SP, suppose P({zo}) = po > 0, for some 2o € R. Then for any x €
[0, xo + A,

P({z}) = e,

due to (2.11).

So P({z}) is strictly lower bounded by a positive constant for an uncountable number
of x, and thus P([xg, xo + A]) = +o0, which contradicts with the fact P is a probability
distribution.

Therefore, VP € SP,Vz € R, P({z}) = 0.

Suppose P([y, z]) = 0 for some y < z € R. Then from (2.11) we have for any |d| < A,

P(ly+d,z+d]) <eP(ly,z]) =0,

and thus P([y + d, z + d]) = 0. By induction, for any k € Z, P([y + kd, z + kd]) = 0, which
implies that P((—oo, +00)) = 0. Contradiction. So for any y < z € R, P([y, z]) # 0. O
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A.2.4 Step 3

In this subsection, we show that for any P € SPgy,, with
V(P) £ / L(2)P(d) < +oo,
z€R

we can use a sequence of probability measures {P; € SPsym }i>1 with symmetric and piecewise

constant probability density functions to approximate P with lim;, ., V(P;) = V(P).

Lemma A.6. Given P € SPsy, with V(P) < +oo, any positive integer i € N, define P;

as the probability distribution with a symmetric and piecewise constant probability density
function f;(x) defined as

2oz ek, (k+1)2) fork €N
fi(=z) z <0 |

Then P; € SPoym and

lim V(P,) = V(P).

i——+o00

Proof. First we prove that P; € SPgyymn, i.e., P; is symmetric and satisfies the differential
privacy constraint (2.11).

By definition f;(z) is a symmetric and nonnegative function, and

—+00 +oo

filz)dx =2 filz)dx
—00 0
=2 P(d
/x€[0,+oo) ( Jj)
=9 P(d A6
[P a9
=1, (A.7)

where in (A.6) we used the fact P({0}) = 0 due to Lemma A.5. In addition, due to Lemma
A5, ar > 0,Vk € N.

So fi(x) is a valid symmetric probability density function, and thus P; is a valid symmetric
probability distribution.

Define the density sequence of P; as the sequence {ag, a1, as, ..., ap, ... }. Since P satisfies
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(2.11), it is easy to see that
a; < e‘ajpp and ajip < €a;, V) > 0,0 <k <.
Therefore, for any z,y such that |z —y| < A, we have
filz) < e fi(y) and fi(y) < e fi(x),

which implies that P; satisfies (2.11). Hence, P; € SPgsym.

Next we show that

lim V(P,) = V(P).

i—+00
Since L(x) satisfies Property 2.2, we can assume there exists a constant B > 0 such that
L(z+1) < BL(z),Yx >T.

Given § > 0, since V(P) is finite, there exists integer 7% > T' such that

/  L@)Pr) < %.

For any integers ¢ > 1, N > T,

/ L(2)Pi(dz) < Pi(IN, N + 1))L(N + 1)
z€[N,N+1)

= P(IN,N + 1))L(N +1)

< / 2)P(dw),
NN+1)

Therefore,

For z € [0,T*), L(z) is a bounded function, and thus by the definition of Riemann-Stieltjes
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integral, we have

lim E(x)?%(d:v):/ [OT*)L’(Q;)P(dx).

100 Jrelo,T+)

So there exists a sufficiently large integer ¢* such that for all ¢ > ¢*

L(z)P;(dx) — L(x)P(dx
/m’m (2)P(dx) /xew) (2)P(dx)

Hence, for all ¢+ > *

<.

V(P:i) = V(P)|

B ‘ e IPER) - /  Lla)P(ds
- ‘/xem Pilde) - / o S@PLE)
/x I L(z)Pi(dr) — / G[T*W)ﬁ(m)p(dz)

<2| [ s~ [ cwp
/ . m)z( 2)Pi(dz) + 2 / L(2)P(dx)

x€[T™*,+00)
0
2040+ =
(6+05+3)
2

E)é.

< (4+
Therefore,

lim L(x)P;(dx) / L(x

1——+00 z€R

]

Define SP; gym £ {Pi|P € SPeym} for i > 1, i.e., SP;gym is the set of probability distri-
butions satisfying differential privacy constraint (2.11) and having symmetric and piecewise
constant (over intervals [k2, (k + 1)2) Vk € N ) probability density functions.

Due to Lemma A.6,
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Lemma A.7.

V= inf L(x)P(dx).

PeU SPi sym z€R

Therefore, to characterize V*, we only need to study probability distributions with sym-

metric and piecewise constant probability density functions.

A.2.5 Step 4

Next we show that indeed we only need to consider those probability distributions with
symmetric and piecewise constant probability density functions which are monotonically

decreasing when x > 0.

Lemma A.8. Giwen P, € SPigm with a symmetric and piecewise constant probability

density function f(-), let {ag,a1,...,an,...} be the density sequence of f(-), i.e,
A A

Then we can construct a new probability distribution P, € SP; eym the probability density

function of which s monotonically decreasing when x > 0, and

/$ _ L@Pifdn) < / _ L))

Proof. Since ay > 0,Vk € N, and
+ooa _, _1
E k i — 27
k=0

we have limg_, . ar = 0.

Given the density sequence {ag, a1, . .., a,, ... }, construct a new monotonically decreasing
density sequence {bg, by, ...,b,,...} and a bijective mapping 7 : N — N as follows
Iy = arg max ay, (A.8)
keN
7(0) = miln n,i.e., the smallest element in I,
nelp
by = Ar(0)s

Vm € Nand m > 1,
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I, = argmax ay, (A.10)
keN\{7(j)lj<m}

w(m) = miIn n,i.e., the smallest element in 7,
ne&ilm

bm/::aﬂhny

Since the sequence {ax} converges to 0, the maximum of {a;} always exists in (A.8) and
(A.10). Therefore, I, is well defined for all m € N.

Note that since >, ap® = 1 and the sequence {by}rey is simply a permutation of

i 2
{artren, 52 i = 5.
Therefore, if we define a function g(-) as
b ve k2 (k+1)2)for ke N
g(—z) =<0

then g(+) is a valid symmetric probability density function, and

/ L(x)g(x)dx < / L(x)f(x)dz.
z€R z€R

Next, we prove that the probability distribution P, with probability density function g(-)
satisfies the differential privacy constraint (2.11). Since {b }ren is @ monotonically decreasing

sequence, it is sufficient and necessary to prove that for all £ € N,

To simplify notation, given k, we define

@’ (k) kgr?glgﬂ ks
i.e., a*(k) denotes the smallest number of {ax, agy1,. .., ax4i}-
First, when k£ = 0, it is easy to prove that ’;—0 < e°. Indeed, recall that by = ar() and
consider the i + 1 consecutive numbers {ar(), @r(0)+1,- - -, @r(0)4:} in the original sequence
{ar}ren. Then a*(0) < b;, since b; is the (i + 1)th largest number in the sequence {ag }ren.

Therefore,

by _ On(0) _ @n(0)

< ef.

For k = 1, by = arq) and consider the i41 consecutive numbers {ar (1), Gr(1)41, - -, Gr(1)43 }-
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If 7(0) ¢ [7(1),7(1) + 4], then a*(w(1)) < bi11, and thus

by (1) (1)
= < < et
biyi by oar(m(1)) T

If m(0) € [x(1),m(1) + 1], then a*(7(0)) < b;4; and af(’;r(f()))) < ¢. Therefore,

by < bo < bo
biv1 ~ by — a*(m(0))

< e

Hence, lni)_i < e€ holds for k = 1.
In general, given k, we prove bkb—’“ < e° as follows. First, if n; ¢ [n(k),w(k) +1],Vj < k,

+i
then a*m(k) < by, and hence

b (k) L)

— < e“.
bitk bitr — a*(ﬂ'(k)) N

If there exists j < k and 7; € [7(k) + 1, 7(k) + ], we use Algorithm 2 to compute a number
j* such that j* < k and 7; ¢ [7(j*) + 1, 7(j*) +14],Vj < k.

Algorithm 2
Jr ek
while there exists some j < k and 7; € [7(j*) + 1, 7(5*) + i] do
JT
end while
Output j*

It is easy to show that the loop in Algorithm 2 will terminate after at most k steps.

After finding j*, we have j* < k, and a*(7(5*)) < bgy;. Therefore

by, < G G e
bi+k bi+k a*(W(J*))

So b:—i < €€ holds for all k € N. Therefore, P, € SP; qym.
This completes the proof of Lemma A.8.

Therefore, if we define
SPima = {P|P € SP;ym, and the density sequence of P is monotonically decreasing},
then due to Lemma A.8,
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Lemma A.9.

Vr = inf /ER L(z)P(dx).

PeUX SPi md

A2.6 Stepb

Next we show that among all symmetric and piecewise constant probability density functions,
we only need to consider those which are periodically decaying.

More precisely, given positive integer 7,

SPipa = {P|P € SP;ma, and P has density sequence {ag, ai,...,an,,...,}

a
satisfying—— = ¢, Vk € N},
Ak+i

then

Lemma A.10.

V= inf L(z)P(dx).
PEUR SPi s Jper

Proof. Due to Lemma A.9, we only need to consider probability distributions with symmetric
and piecewise constant probability density functions which are monotonically decreasing for
xz > 0.

We first show that given P, € SP;ma with density sequence {ag,as,...,an,,...,}, if
‘Z—f < €, then we can construct a probability distributions P, € SP; ma With density sequence
{bo,b1,...,bpn,-..,} such that Z—O = e and

V(P.) > V(Py).

Define a new sequence {bg, b1, ..., by, ...} by scaling up ag and scaling down {ay, as, ... }.

More precisely, let 6 = . — 1> 0, and set

2D (55 —a0)e—* 2 +ao)

bo = Clo(l—{—é),
bk = ak(l — 5'),V k > 1,

where ¢ £ 29 > 0, and we have chosen ¢ such that % = % _20"% _ _ c¢
5500 bi %k 3p(1Te) 90
It is easy to see the sequence {bg,b1,...,b,,...,} corresponds to a valid probability
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density function and it also satisfies the differential privacy constraint (2.11), i.e

by

k+i

< e, Vk > 0.
Let Py, be the probability distribution with {bg, b1, ...,b,,...,} as the density sequence

of its probability density function. Next we show V(P,) < V(P,).
It is easy to compute V(P,), which is

V(P,) = 2% <a0/0 dw+2ak/A+l) ) |

Similarly, we can compute V(P,) by

V(Py) =2~ (bo/ L(x dm+2bk/k+1) x)dx)

A (k+1) Q
:V(Pa)+27 <a05/0 x)dr — & Zak/ )

where in the last step we used the fact that (fo% L(x)dx — fk(zrl)% E(x)dx) <0, since L(-)
is a monotonically increasing function for x > 0.

Therefore, for given ¢ € N, we only need to consider P € SP;ma With density sequence
{ag, ay, ... .. } satisfying %0 =

Next7 we argue that among all probability distributions P € SP; mg with density se-
quence {ag,ai,...,ay,,..., satisfying %1 = e, we only need to consider those probability
distributions with density sequence also satisfying a‘:ﬁ = e
Given P, € SPjma with density sequence {ag,ai,...,an,...} satisfying & a—O = ¢ and

< e, we can construct a new probability distribution P, € SP; na with densfcy sequence

a7,+1

{bo,b1,...,bn, ...} satisfying
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b

bi+1

= eE’

and V(P,) > V(Py).

First, it is easy to see a; is strictly less than ag, since if ag = ay, then a?L = a‘% > 4=
1 1 1

Then we construct a new density sequence by increasing a; and decreasing a;+;. More

precisely, we define a new sequence {bg,by,...,b,,...} as

bkz&k,Vk%l,k#Z—i—l,
bl :a1+5,
biv1 = Ay — 9,

€ . —
where ¢ = ~%+L=%L and thus b e
+e b2+1

It is easy to verify that {bg, by, ..., by,...} is a valid probability density sequence and the
corresponding probability distribution P, satisfies the differential privacy constraint (2.11).

Moreover, V(P,) > V(P,). Therefore, we only need to consider P € SP; ma with density

sequences {ag, @1, ..., 0y, ...} satisfying %2 = e and aaﬁ = e“.
Using the same argument, we can show that we only need to consider P € SP; g with
density sequences {ag, ay, ..., a,,...} satisfying
a
L e Vk >0
Qi+k
Therefore,
V= inf / L(x)P(dz).
Peufilspi,pd z€R

O

Due to Lemma A.10, we only need to consider probability distribution with symmetric,
monotonically decreasing (for = > 0), and periodically decaying, piecewise constant probabil-
ity density function. Because of the properties of symmetry and periodic decay, for this class
of probability distributions, the probability density function over R is completely determined
by the probability density function over the interval [0, A).

Next, we study what the optimal probability density function should be over the interval
[0,A). It turns out that the optimal probability density function over the interval [0, A) is

a step function. We use the following three steps to prove this result.
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A.2.7 Step 6

Lemma A.11. Consider a probability distribution P, € SP; pa (i > 2) with density sequence

{ag,a1,...,an,...}, and o= <. Then there exists a probability distribution P, € SPipa
with density sequence {bg, b1, ..., by, ... }such that b,b__01 = e°, and

V(Py) < V(Pa).

Proof. For each 0 < k < (i — 1), define

foo  eGHEA
wy = Z eﬁ/ L(z)dx. (A.11)
=0 (j+§)A

Since L(cdot) satisfies Property 2.2 and V* < oo, it is easy to show that the sum of the
series in (A.11) exists and is finite, and thus wy, is well defined for all 0 < k < (i — 1). In

addition, it is easy to see
wo S wyp S wp < e < Wi,

since £(z) is a monotonically increasing function when z > 0.
Then

V(P.) = /GR L(z)P,(dx) =2 iwkak.

Since —#- < e, we can scale ag up and scale {ai,...,a;—1} down to derive a new valid

i—1

probability density function with smaller cost. More precisely, define a new probability

measure P, € SP; ,qa with density sequence {bg, b1, ..., by, ...} via

bO é ,Ya()a

be &7 ap, V1 <k <i—1,

for some v > 1 and ' < 1 such that

To make {bg, b1,...,b,,...} be a valid density sequence, i.e., to make the integral of the
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corresponding probability density function over R be 1, we have

1—e“2

2 A

bk = ar
0

i
=)
i

—€

Define t £ 1_26

%, then we have two linear equations on v and ~':

yag = ey (A.12)
yap + 7' (t — ag) = t. (A.13)

From (A.12) and (A.13), we can easily get

€€tai_1

v = >1
ao(t —ag + eﬁai,l)

, t

t— ap+ e‘a;—

< 1.

7
Then we can verify that the V(P,) > V(P,). Indeed,

V(Pa) - V<Pb)

zeR
i—1 i—1

=2 E WA — 2 E wkbk
k=0 k=0

2 ((1 — y)woao + (1 —+) Zwkak)
2 ((1 — y)woag + (1 —7+) i woak>

2 ((1 = y)woao + (1 =" )wo(t — ao))

a;_1€e1 —ag + €fa;_
:2?1)0 ap — i—1 —|—<t—a0) 0 i—1
t— ag + e‘a;_1 t— ag + efa; 1

v

=0.

This completes the proof.
O

Therefore, due to Lemma A.11, for all ¢ > 2, we only need to consider probability

distributions P € SP; a4 with density sequence {ag, a1, ..., a,,...} satisfying o =et
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More precisely, define

o _ e}

SPix = {P € SP;pa|P has density sequence {ag, ai, ..., an, ...} satisfying
Qi—1

Then due to Lemma A.11,

Lemma A.12.
V= inf / L(2)P(dx).
PEU,?i:;S'Pi’fT zER
A28 Step7
Next, we argue that for each probability distribution P € SP; ¢ (i > 3) with density sequence
{ag,a1,...,an,, ...}, we can assume that there exists an integer 1 < k < (i — 2), such that
a; = CL(),\V/O <5< k?, (A14)
a; = CLi_l,Vk’ <7 <. (A15)

More precisely,

Lemma A.13. Consider a probability distribution P, € SP; s (1 > 3) with density sequence
{ag,a1,...,an,...}. Then there exists a probability distribution P, € SP; s with density
sequence {bg,b1,...,bn, ...} such that there exists an integer 1 < k < (i — 2) with

bj = ag,V0 <7<k, (A.16)
bj = ai_l,‘v’ k< g <, (A].?)

and
V(Py) < V(Pa). (A.18)

Proof. 1f there exists an integer 1 < k < (i — 2) such that

aj:ao,V0§j<k,

aj:ai_l,Vk:<j<i,

then we can set P, = P,.
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Otherwise, let k; be the smallest integer in {0,1,2,...,7 — 1} such that

G, 7’é Qop,

and let ky be the biggest integer in {0,1,2,...,7 — 1} such that

Ay 7 Qi1

It is easy to see that k; # ko. Then we can increase ay, and decrease ag, simultaneously
by the same amount to derive a new probability distribution P, € SP, s with smaller cost.
Indeed, if

ap — akl S ak2 — Qj—1,

then consider a probability distribution P, € SP; ¢, with density sequence {by, b1, ...,bi—1,...}
defined as

bj = aO,VO S] S kl,
bj :aj,Vkl <j§ :I{Zg—l,
bk‘g - ak‘g - (CLO - ak1)7

bj:aj,‘v’k2<j§i—1.
We can verify that V(P,) > V(P,) via

V(Pa) =V (Py)
= / . L(z)P,(dx) — / L(z)Py(dx)

zeR

= Q(wkl bkl + wk2bk2) - 2(wk1 ak, + wk2ak2)
= 2wy, (ao — ax, ) + 2wy, (ar, — (a0 — ag,) — ax,)
= 2((10 - akl)(wkl - ka)

<0,

where w; is defined in (A.11).

If ap — ap, > ax, — a;_1, then accordingly we can construct P, € SP; s by setting

bj = ap,V0 < j < ky,

bk:l == ak:l + (a’k‘Q - a’i—l))

87



bj :Clj,Vkl <j < kQ — 1,
bj = CLz;l,VkQ S] S’l— 1.

And similarly, it is easy to verify that V(P,) > V(P).

Therefore, continue in this way, and finally we will obtain a probability distribution
Py, € SP; s with density sequence {bg, b1, ...,by,...} such that (A.16), (A.17) and (A.18)
hold.

This completes the proof.

Define

SPistep = {P € SPis | P has density sequence {ag,a1,...,an,...}
satisfying(A.16) and (A.17) for some 1 < k < (i — 2)}.
Then due to Lemma A.13,

Lemma A.14.

V-t / _ L)P(ds).
A.2.9 Step 8

Proof of Theorem 2.4. Since {P,|y € [0,1]} C SP, we have

V* = inf /ERE(I)P(CZ:E) < inf /ERﬁ(x)Pv(dx).

PeSP ~v€[0,1]

We prove the reverse direction in the following.
We first prove that for any P € SP;sep (@ > 3), there exists v € [0, 1] such that

/ L(2)Py(dz) < / L(2)P(dz).
z€eR zeR
Consider the density sequence {ag, a1, ..., an,...} of P. Since P € SP; step, there exists

an integer 0 < k < i — 2 such that

aj:ao,VO§j<k,

a; = ape” Ve <j<i—1.
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Let

Then a(v') = aop.
It is easy to verify that

P2 <A < (k4 )2
1 1

The probability density functions of P and P, are the same when z € [0, EA)U[EELA A).

Because they periodically decay, the integral of probability density functions over [0, A) is

__,—€
ITE. Hence, we have

A k k—i— 1
- = ao(y' — )A + e “ap(

—-7)A.

Define 8 £ i(y' — %) € [0,1]. Then
ap = Bag + (1 — B)e “ap.
Define

1) A R U
w —Ze”/ L(z)dx, (A.19)

P
=0 (j-&-%)A
e GHEA

w,(f) £ Z e e L(z)dz, . (A.20)
§=0 F+)A

Note that wy, = w,i )+ w . Since L(z) is a monotonically increasing function when = > 0,

we have
wy GHEDA-(G+)A
WD S GEA-HhA T At
Therefore,

/ L(z)P(dz) / L(x dx)

=2wiay — 2 (w,(€ )ao + wy, )aoe 6)
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=92 (w,(;) + w,(f)) ap — 2 <w,(€1)a0 + w,(f)aoe’e)

=2(ay — aoe_ﬁ)w,(f) —2(ag — ak)w,gl).

Since
ap — ape”© _ B(ag — ape™)
ap — ag (1 —p)(ag — age™)
__B
1-8
v -k
By
1)
w
> k.
we have
/ L(2)P(dz) — / L(2) Py (de)
zeR x€R
=2(ar — ape” )w,(f) —2(ap — ak)w,gl)
>0.
Therefore,
V= inf / L(2)P(dz)
PEUX ;8P step J per

~v€[0,1]

> inf /ERﬁ(x)Py(dx).

We conclude

V* — inf / L) = inf [ L@)P () = nf / L@ (@)

PESP ’Ye[ovl] :cE]R 'YE[O?]-]

This completes the proof of Theorem 2.4.
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A.3 Proof of Theorem 2.5

Proof of Theorem 2.5. Recall b= e, and L(z) = |z|. We can compute V (P,) via
gl

V)= [ i@

+oo
=2 24 d
/0 xf(z)dx
+o0 A A
=9 kzz% (/07 (z + kA)a(y)e *dx + /m(w + ]{;A)a(,y)e—ee—kedx)
+o00
— 2AZa(y) ;; (ekw i (E D) - (k + 7)2>

+oo 2 2
_ + 2k~ _ 2k +1 —2ky —~
_ 2A2 kef}/— (k+1)e
a(v) kg_o (e 5 +e 5

b+ (1 B b)fy2 e—ke)
2

= 2A%(y) Z ((b + (1 = b)y)ke % +-
= 2A%a(7y) ((b + (1 —=10b)y) i _bb)2 + bt (12_ oh 7 i b) (A.21)

1—-b b b+ (1—-0b)* 1
28D+ (1— b)) ((b+(1 Bl TR i— 1—b>

B b 10+ (1—0)y?
_A(l—b+§b+(1—b)7 !

= 2A?

where in (A.21) we use the formulas

+oo 1
k=1
+00 b
k
> kbt = T (A.23)
k=1

Note that the first term ﬁ is independent of . Define

a b+ (1 -0

9(v) = m7

and thus to minimize V(P,) over v € [0, 1], we only need to minimize g(v) over v € [0, 1].
Since v € [0,1], g(7v) < 1. Also note that g(0) = g(1) = 1. So the optimal v* which

minimizes g(7) lies in (0, 1).
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Compute the derivative of g(v) via

by 291 =D) (b4 (1 =b)y) — (b4 (1 —D)y*)(1 —b)
AU b+ (1 b))
(1= b)y2 +2by — b

b+ (1= b))

— (1-1)

Set ¢’(7*) = 0 and we get

Therefore,

B b 1b+ (1 —b)y*?
V<P”*>_A(1—b+2 b+ (1—b)y*

wlm

e
e —1

=A

Due to Theorem 2.4, the minimum expectation of noise amplitude is V(P,+) = A2

[]

A.4 Proof of Theorem 2.7

Proof of Theorem 2.7. Recall b £ e~¢. Then we compute V (P,) for the cost function £(z) =
2? via

V(P,)

:/ 22 f7(x)dx
z€R

+oo
— 2y
—2/0 x° f7(x)dx

) i:f < /0 VA(Q: + kA)a(y)e ™ ds + /7

A

(x + kA)Qa(’y)e_ee_kde)
A
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3_ 13 3
3 3
k=0
+oo 3 2 2 2 912, 2 .3
_ 9A%a(y) (e_m + 31«2 3K e 3R + Bk 41 Z;k v —3ky? — 5 )
k=0
+oo 1 _73 73
= 28%) 3 (550 Tk (07 4 (L= 2™ + 3+ (1= e )
k=0
1—73 ool b b2 +b
=2A° y— 24 (1 -2 —— 1— b)) —
(A.24)
1-b
= 2A°
2A(b + (1 =b)y)
1- o1 5 5 b b>+ b
(5504 Dy + 02+ 0=+ (4 (=
2 _ 2 _ 3
_ A b>*+b b+ (1—-0)y" b 1b4+(1-b)y (A.25)
(1-=0)2 b+ (1=b)y1—=b 3b+(1-0b)y
where in (A.24) we use formulas (A.22), (A.23) and
+00 2
2 (07 40)
Z::k: b= T (A.26)

Note that the first term i JZ)Q is independent of v. Define

b+(1—0)* b 1o+ (1-b)y°
bt —b)r T—b 3041 =b)
b7 2 2240

b+ (1 —0b)y ’

h(y) £

h(7) over v € [0, 1].
Since v € [0,1], h(v) < & + 3. Also note that h(0) = h(1) = 2 + 5. So the optimal

~* which minimizes h(7) lies in (0, 1).

and thus to minimize V(P,) over v € [0, 1], we only need to minimize

Compute the derivative of h(y) via

v (=D 2+ (1 =b)y) — (PP + 0y + 5 + 51— D)
7) = b+ (1— b))

L 2(1—b)%93 + 2b(1 — b)y? + 2b%y — 2t
N (b+ (1 —b)y)?
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Set h'(v*) = 0 and we get

2 oM + b
S = BP9 4 26(1 = by + 26y — 3+ _

0. (A.27)

Therefore, the optimal v* is the real-valued root of the cubic equation (A.27), which is

b (b — 207 + 2b* — b°)/3
f = . A2
L S VT RAE (A.28)

We plot v* as a function of b in Figure 2.5, and we can see v* — % as € = 0, and v* — 0
as € — +o0o. This also holds in the case L(z) = |z|.
Plug (A.28) into (A.25), and we get the minimum noise power

V+b b+ (1—0by2 b 1o+ (1 —b)y*?
) = A2 4
V(Py) ((1—6)2+b+(1—b)7*1—b+3b+(1—b)fy*)
A2272/3b2/3(1+b)2/3_’_b
(1—10)2 '

Due to Theorem 2.4, the minimum expectation of noise power is

O
A.5 Proof of Theorem 2.9
Proof of Theorem 2.9. Let n =m + 1, and define
—+00 )
¢ 2 0K, (A.29)
k=0

for nonnegative integer 1.

First we compute V(P,) via

V(P,) =2 i; ( /0 " @ BAY (e i + /7

A

(x + k:A)ma('y)e_(kH)edx)
A
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+00 m+1 m+1 m+1 m-+1

—~ m+1 m+1
“+o00 n n 3 —1 n n 1 —1
' ‘ iJn—i ' N (1 — A8t
— 2A”a(7) (bk Zz:l (;7/)’7 + bbk Zz:l (z)(n v ) )
k=0

= 2A"a() ( Y M”Z () —vi)cn_z)

2A™(1 —b) >y (M) enmi(¥ (1 = b) +b)
2An (1 —5b)+b

Let hi(y) = V((ll ;’Lj’ for ¢ > 2. Since h;(0) = h;(1) =1 and h;(y) < 1 for v € (0,1), hi(7)
1).
Therefore, if we define h(y) £ s XL )E; ;g +z§1 ke , the optimal v* € [0, 1], which mini-
mizes V(P,), should satisfy

achieves the minimum value in the open interval (0,

where h/(-) denotes the first order derivative of h(-).

It is straightforward to derive the expression for A'(-):

Wiy = iz (i 1A =) —8) +5) = (1 ) B, (enir' (L= b) +5)

= (7(1—b) + b)2

_ > o 1( )Cn (=17 (1 =0+ >0 1( )Cn iy T (L= b)b— 30 1( )Cn ib(1—b)
(v(1—0) + )2 '

(A.30)

Therefore, v* should make the numerator of (A.30) be zero, i.e., v* satisfies

g@c"‘i“‘l (1-9) +Z(>0n iy 1—b)b—§;(?>cn_ib(1—b):

Since
g (Z‘) Cumili = 1)y (1 = b)* + é (7;) Cuiin' (1 = b)b — é (7;) e ib(1— )
B Z: CZ) nmili = DL =) 4 "Z:; (z Z 1) en—(in) (i + 17 (1 = b)b
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—co(n — 1)y (1 — b)? + f_l (C‘) enali— 1)(1— b + ( " )cn_(iﬂ)(z' L 1)1 - b)b) y

i1
Fneas(1 == 3 (7 )ewbli =

e 01074 5 (et~ 0007 (7 Jewnti+ 01 -0)
(e

1 satisfies
ol — *”1—b2+n§(( Jensti =002+ (1 Jergenti+ D1 00) 5
5 (e s

We can derive the asymptotic properties of v* from (A.31). Before deriving the properties
of v*, we first study the asymptotic properties of ¢;, which are functions of b.

There are closed-form formulas for ¢; (i=0,1,2,3):
400 1
_ k __
Co = Z b® = 1 b,
k=0
o0 b
o=Y Vk= ,
2 k=g

+oo
b+ b
& = Z prg? =

(1—10)*
b+ 4b% + b
_ k13 _
3 = Zb k N
In general, for ¢ > 1,
400 '
Ciy1 = Z bklirl Z bkk.erl b+ Z karl (k + 1>1+1’

k=1
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+oo “+o0

bCz’+1 _ Z karlkiJrl — Z karlkiJrl.

k=0 k=1
Therefore,

+oo
Cit1 — bci—i—l == b + Z bk—H((kZ + ].)H_l — ]fH_l)
k=1

=b+ Y B! C*ﬁ)m
>y (]
—b+bZ:(j >§:Hb

A

+1

_b+ijE+§ (Z )~
b i+l
:1——b+bz( )

7j=1

and thus

cm:(l_bb 1_b2(2+1) . (A.32)

From (A.32), by induction we can easily prove that
e asb—0,¢; — 0,Vi > 1;

e asb— 1, ViZO,ci—>+oo,ci:Q($) and

lim S (1 — ) =i+ 1.
b—1 ¢

As b — 0, since ¢; — 0 for i > 1 and ¢y = 1, the last two terms of (A.31) go to zero, and
thus from (A.31) we can see that v* goes to zero as well.
W) and v* is bounded by 1, the first term of (A.31) goes to

zero, and the dominated terms in (A.31) are

(;‘) Cn92(1 = b)by* — (Z) en-2b(1 = b) = 0.

Thus, in the limit we have v* = % Therefore, as b — 1, v* — %

As b — 1, since ¢; = €
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This completes the proof. O]

A.6 Proof of Theorem 2.12 and Theorem 2.13

In this section, we prove Theorem 2.12 and Theorem 2.13, which give the optimal noise-

adding mechanisms in the discrete setting.

A.6.1 Outline of Proof

The proof technique is very similar to the proof in the continuous settings in Appendix A.2.
The proof consists of 5 steps in total, and in each step we narrow down the set of probability

distributions where the optimal probability distribution should lie:

e Step 1 proves that we only need to consider probability mass functions which are

monotonically increasing for ¢ < 0 and monotonically decreasing for ¢ > 0.
e Step 2 proves that we only need to consider symmetric probability mass functions.

e Step 3 proves that we only need to consider symmetric probability mass functions

which have periodic and geometric decay for ¢« > 0, and this proves Theorem 2.12.

e Step 4 and Step 5 prove that the optimal probability mass function over the interval
[0, A) is a discrete step function, and they conclude the proof of Theorem 2.13.

A.6.2 Stepl

Recall SP denotes the set of all probability mass functions which satisfy the e-differential
privacy constraint (2.16). Define

First we prove that we only need to consider probability mass functions which are mono-
tonically increasing for ¢ < 0 and monotonically decreasing for ¢ > 0.
Define

SPuono = {P € SP|P(i) < P(j),P(m) > P(n),Vi <j < 0,0 <m < n}.
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Lemma A.15.

+oo
V= Peé%iom Z L(1)P(i).

1=—00

Proof. We will prove that given a probability mass function P, € SP, we can construct a

new probability mass function Py, € SPono such that

+oo +o0o
S LR 2 Y LGP,

Given P, € SP, consider the sequence sa = {P,(0), Pa(1), Pu(—1), Pa(2), Pa(—2),... }.
Use the same argument in Lemma A.5 and we can show P, (i) > 0,Vi € Z. Let the sequence
sb = {by,b1,b_1,b2,b_5,...} be a permutation of the sequence sa in descending order. Since

:;Ofoo P.(i) =1, lim;, o Pu(i) = lim; o P,(7) = 0, and thus sb is well defined. Let 7 be

the corresponding permutation mapping, i.e., 7 : Z — Z, and

Since L£(+) is a symmetric function and monotonically decreasing for i > 0, we have

IA

£(0) < £(1)
L

< L(i

L(-1)<L2)<L(-2) < -
< L(—i)

)
<LE+1)<L(—(i+1)<---.

~—

(_
Therefore, if we define a probability mass function P, with
Py(i) = b;, Vi € Z,

then
2 LOP) = D0 LEP).

Next, we only need to prove P, € SPiono, i-€., we need to show that P, satisfies the
differential privacy constraint (2.16).

Due to the way how we construct the sequence sb, we have

bp > by >by>b3 >+,
bo>b_1 >by>b3>---.
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Therefore, it is both sufficient and necessary to prove that

bi
it
bi

i—A

o~
>
|

o~
|

Since P, € SP, Vi€ {m(0) — A,7(0) — A+ 1,7(0) —A+2,...,7(0) + A},

Pa(m(0))
Pal)  —

Therefore, in the sequence sb there exist at least 2A elements which are no smaller than
boe €. Since b_a and ba are the 2Ath and (2A — 1)th largest elements in the sequence sb
bo

other than by, we have ;> < e and é’—o < e,
—A A

In general, given i € Z, we can use Algorithm 3 to find at least 2A elements in the
sequence sb which are no bigger than b; and no smaller than b;e™°.

More precisely, given ¢ € Z, let j; and j; be the output of Algorithm 3. Note that
since the while loops in Algorithm 3 can take only at most 2(]i| + 1) steps, the algorithm
will always terminate. For all integers j € [w(j7) — A, 7(j55) — 1], Pa(j) is no bigger than
b; and is no smaller than P,(j5)e ¢ and for all integers j € [r(j%) + 1,7(j%) + 4], Pu(4)
is no bigger than b; and is no smaller than P,(jz)e . Since P,(j5), Pu(j;) > bi, for all
Jj € m(ir) — An(jr) — 1 U [n(j) + 1,7(j5) + A], Pu(j) is no bigger than b; and is no
smaller than b;e”¢. Therefore, there exist at least 2A elements in the sequence sb which are
no bigger than b; and no smaller than b;e¢.

If 1 <0, then b;_a is the 2Ath largest element in the sequence sb which is no bigger than
b; and no smaller than b;e ; and if 7 > 0, then b, o is the (2A — 1)th largest element in the

sequence sb which is no bigger than b; and no smaller than b;e™¢. Therefore, we have

bi
i+
bi

i—A

o>
>

(=

This completes the proof of Lemma A.15.
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Algorithm 3
Jr 1
while there exists some j which appears before ¢ in the sequence {0,1,—1,2,—2,...} and
m(j) € [v(jr) + L, 7(j) + A] do
Jr<J
end while

Jp 1
while there exists some j which appears before ¢ in the sequence {0,1, —1,2,—2,...} and
m(j) € [v(j;) — A, 7(j;) — 1] do
JL = J
end while

Output j5 and j;.

A.6.3 Step 2

Next we prove that we only need to consider symmetric probability mass functions which
are monotonically decreasing when ¢ > 0.
Define

SPSym = {P S Spmono‘ P(Z) - P(—Z),V’L € Z}

Lemma A.16.

V= _inf Y L@EP().

PeESPsym .
1=—

Proof. The proof is essentially the same as the proof of Lemma A.3.

Given P, € SPruono, define a new probability mass function P, with

,Pa(i) + ,Pa(_i)
2

Py(i) £ Vi e Z.

It is easy to see Py, is a valid probability mass function and symmetric. Since the cost

function £(-) is symmetric,

> LEPa() = Y LEP().

1=—00 1=—00

Next we show that P, also satisfies the differential privacy constraint (2.16). For any
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i€ Zand |d| <A, since Py(i) < eP,(i + d) and P,(—i) < e“P,(—i — d), we have

Pa(i) + Pa(—1)

Py(i) = 5
< ePali+d) + ePo(—i —d)
- 2
= 6677;,(2' + d)

Therefore, P, satisfies (2.16).
Finally, for any 0 < i < j,

So Py € SProno, and thus Py, € SPgyr,. We conclude

+oo
V= Peggsym Z L(3)P(1).

1=—00

A.6.4 Step 3

Next we show that among all symmetric and monotonically decreasing (for ¢ > 0) probability
mass functions, we only need to consider those which are periodically and geometrically
decaying.

More precisely, define

-
SPpd 2 {P € SPuyn . ()

m:e,VZEN}.

Then
Lemma A.17.
V*= inf V(P).

PESPyq
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Proof. Due to Lemma A.16, we only need to consider probability mass functions which are

symmetric and monotonically decreasing for ¢ > 0.

We first show that given P, € SPgyn, if 77;;2 < e, then we can construct a probability

mass function P, € SPgy, such that Pbo = e and
V(Pa) = V(Py).

Since P, is symmetric,

Suppose % < e, then define a new symmetric probability mass function P, with

Py(0) £ (1 + 0)P,(0),
Py(i) = (1 — §)P,(4), Vi € Z\{0},

where

Py (0)
so that Pu(B)

It is easy to see Py, € SPgym, and

:ee

V(Py) — V(P,)

=0L(0 —26' Z L(i

<6L(0 — 25'25

<OL(0)Pa(0) — 6"L(0)(1 = Pu(0))
=0.

Therefore, we only need to consider P € SPgyy, satisfying P((g)) =ef
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By using the same argument as in the proof of Lemma A.10, one can conclude that we
only need to consider P € SPgy, satisfying
P(i) .
—— =e,Vie N A.33
Para) S (A.33)
Therefore, V* = infpcsp , V(P).
O

Proof of Theorem 2.12. In the case that A = 1, due to Lemma A.17, the symmetry property
and (A.33) completely characterize the optimal noise probability mass function, which is the

geometric mechanism. O]

A.6.5 Step 4

Due to Lemma A.17, the optimal probability mass function P is completely characterized by
P(0),P(1),...,P(A—1). Next we derive the properties of optimal probability mass function
in the domain {0,1,2,...,A —1}.

Since Lemma A.17 solves the case A = 1, in the remaining of this section, we assume
A > 2.

Define

SPetepy = {P €SPpa | Ik €{0,1,...,A =2}, P(i) = P(0),¥i € {0,1,...,k},
P(j) = AP0),Vj e {k+1,k+2,...,A —1}}.

Lemma A.18.

V= inf V(P).
PeUsere—e,115Pstep
Proof. If A =2, then for any P € SP,q, we can set k = 0, and P € SPgtep P%A(g)l). Therefore,
Lemma A.18 holds for A = 2.
Assume A > 3. First, we prove that we only need to consider probability mass function
P € SPpa such that there exists k € {1,2,...,A — 2} with

P(0),Vi € {0,1,... .k — 1} (A.34)
PA—-1),Vie{k+1,k+2, .. A—1} (A.35)

e}

< 2
~—
|
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More precisely, let P, € SPpq, we can construct a probability mass function P, € SPpq
such that there exists k satisfying (A.34) and (A.35), and V(Py) > V(P,).

The proof technique is very similar to proof of Lemma A.13. Suppose there does not
exists such k for P,, then let k; be the smallest integer in {1,2,..., A — 1} such that

Pa(k1) # Pa(0),
and let ky be the biggest integer in {0,1,..., A — 2} such that
Palka) # Pa(A —1).

It is easy to see that k; < ks, and k; # 0. Then we can increase P, (k1) and decrease P, (k2)
simultaneously by the same amount to derive a new probability mass function P, € SPpq

with smaller cost. Indeed, if
Po(0) = Pu(k1) < Pu(ks) — Pu(A — 1),

then consider a probability mass function P, € SP,q with

Py(i) = Pa(0),V0 < i < ky,
Po(i) = Pu(i),Vky < i < ks,

Po(k2) = Palkz) — (Pa(0) — Palk1)),
Po(i) = Pu(i),Vko < i < A —1.

Define
wy = L£(0) + 2 Z L(EA)e ke,
k=1

w; £ 2> L3+ kA)e ™ Vi€ {1,2,... A~ 1}.
k=0

Note that since £(+) is a monotonically decreasing function when i > 0, we have wy < wy <
< WA
Then we can verify that V(P,) < V(P,) via

V(Pb) - V(Pa)
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If
Pa(()) - Pa(’ﬁ) Z Pll<k2) - PG(A - 1)7

then we can define P, € SP,q by setting

And similarly, we have
V(Ps) = V(Pa) = (Palkz) = Pa(A = 1)) (wr, — wp,) <0.

Therefore, continue in this way, and finally we will obtain a probability mass function
P), € SPpa such that there exists k to satisfy (A.34) and (A.35) and V(P,) < V(P,).

From the above argument, we can see that in the optimal solution P* € SP,q, the
probability mass function can only take at most three distinct values for all i € {0,1,..., A—
1}, which are P*(0), P*(k), and P*(A — 1). Next we show that indeed either P*(k) = P*(0)
and P*(k) = P*(A — 1), and this will complete the proof of Lemma A.18.

The optimal probability mass function P € SP,q can be specified by four parameters
PO), A € [e51], k € {1,2,...,A — 2}, and P(k). We will show that when k and \ are
fixed, to minimize the cost, we have either P(k) = P(0) or P(k) = P(A — 1) = AP(0).

Since S5 P(i) =1,

kP0) +P(k) + (A —k—1)AP(0)

2
1-0

—-P0) =1,

and thus P(k) _ (1+73(0))(1—b)—273((2))k—2)\7>(0)(A—k—l) ‘
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The cost for P is
V(P)

k—1 A-1
=P0)> wi+PA=1) Y wi+Plk)w

i=k+1

A—-1
03w+ (L PO)(1—8) = 2P(O)k = 22P(O)(A —k = 1)

9 )wka

k—1
=P(0)> w;+ AP
=0

i=k+1

which is a linear function of the parameter P(0).
Since P(k) > AP(0) and P(k) < P(0), we have

kP(0) + P(k) + (A —k —1)AP(0)

1=2 o —P(0)
< o KP(0) +P(0) +1 (_Ab— k—1)AP(0) P(0)
| — oFP(0) + P(k) ? (_Ab— kE=DAPO)
5 o FPQ+XPO) + (A k= DIPO) 0
1—b
and thus the constraints on P(0) are
2k+2+2>\(Al:Z— 1)—1+b <P0) < 2]<;+2)\(A11l;) 140 (A.36)

Since V(P) is a linear function of P(0), to minimize the cost V(P), either P(0) =
2k+2+2,\(1[—bk—1)—1+b or P(0) = W’f’k)_l%, i.e., P(0) should take one of the two extreme
points of (A.36). To get these two extreme points, we have either P(k) = P(0) or P(k) =
AP(0) = P(A — 1).

Therefore, in the optimal probability mass function P € SP,q, there exists £ < A — 2

such that

P(i)
P(i)

P(0),Vi € {0,1,...,k}
PA-1).Vie{k+1,k+2,...,A—1}

This completes the proof of Lemma A.18.
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A.6.6 Stepb

In the last step, we prove that although A € [e™¢, 1], in the optimal probability mass function,
A is either e™€ or 1, and this will complete the proof of Theorem 2.13.

Proof. For fixed k € {0,1,...,A — 2}, consider P € SP,q with

P(i) =P(0),Vi € {0,1,...,k},
P(i) =AP0),Vie{k+1,k+2,...,A—1}.

(k+1)P(0)+ (A —k—1)AP(0)
1-0

and thus

1-b

P(O):2(k:+1)+2(A—k—1)A—1+b‘

Hence, P is specified by only one parameter .
The cost of P is

Zw,+>\73 sz

k+1

(1_5)(2 owz"‘)‘zz k—i—lwi)
2k+1)4+2(A—k—=1)A—1+b

Cy
:(1_b)(01+2(k+1)+2(A_k_1)>‘_1+b)7

where C} and Cy are constant terms independent of A. Therefore, to minimize V(P) over
A € [e74 1], A should take the extreme points, either e~ or 1, depending on whether C5 is
negative or positive.

When A = 1, then the probability mass function is uniquely determined, which is P €
SPpa with

1—

PO = a1 13

Vie{0,1,...,A -1},
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which is exactly P, defined in (2.17) with r = A.
When X = e™¢, the probability mass function is exactly P, with r = k + 1.

Therefore, we conclude that

“+o0

= {reanlggA}iZ L(@)P, (7).
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Theorem 3.1

In this section, we give detailed and rigorous proof of Theorem 3.1.

B.1.1 Outline of Proof

The key idea of the proof is to use a sequence of probability distributions with piecewise
constant probability density functions to approximate any probability distribution satisfying
the differential privacy constraint (3.6). The proof consists of 4 steps in total, and in each
step we narrow down the set of probability distributions where the optimal probability

distribution should lie:

e Step 1 proves that we only need to consider probability distributions which have sym-

metric and piecewise constant probability density functions.

e Step 2 proves that we only need to consider those symmetric and piecewise constant

probability density functions which are monotonically decreasing.
e Step 3 proves that the optimal probability density function should periodically decay.

e Step 4 proves that the optimal probability density function is staircase-shaped in the

multiple dimensional setting, and it concludes the proof of Theorem 3.1.

B.1.2 Step 1
Given P € SP, define

V(P)é//.../Rdﬁ(x)P(dasldxg...d;vd).
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Define

V2 inf V(P).
PeSP

Our goal is to prove that V* = 11[1f ] ] fga £( x)dridxs . . . dzg.
v€[0,1

If V* = 400, then due to the definition of V*, we have

inf // / X)dridxs ... drg > V* = 400,
~v€[0,1] R4

and thus infycpq) [ [ ... Jpa LX) fy(X)dz1dzy ... deg = V* = 400. So we only need to
consider the case V* < +o0, i.e., V* is finite. Therefore, in the rest of the proof, we assume
V* is finite.

First we show that given any probability measure P € SP, we can use a sequence
of probability measures with multiple dimensionally piecewise constant probability density

functions to approximate P.
Given 7 € N and k£ € N, define

A A
Ai(k)={x¢€ IR<d|k7 < x|y < (k+ 1)7} C R%

It is easy to calculate the volumn of A;(k), which is

d Ad

Vol(A, (k) = 2 (k+ 1)~ k%) =7

Lemma B.1. Given P € SP with V(P) < 400, any positive integer i € N, define P; as the
probability distribution with probability density function f;(x) defined as

s P(Ai(F))

fi(x) = a;(k) = Vol(Ai(k:))X € A;(k) fork € N. (B.1)

Then P; € SP and

lim V(P;) = V(P).
1—+00
Before proving Lemma B.1, we prove an auxiliary lemma which shows that for probability
mass function over Z? satisfying the e-differential privacy constraint, we can construct a new
probability mass function by averaging the old probability mass function over each ¢!-ball

and the new probability mass function still satisfies the e-differential privacy constraint.
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Lemma B.2. For any given probability mass function P defined over the set 72 satisfying
that

Pliv, 1) < €Pliz, j2), V]iv — io| + [j1 — Jo| < A, (B.2)
define the probability mass function P via

ﬁ(@,j) _ P(OvO) (Z7J> = (0’ O)
pu+ - (i,7) # (0,0)

Zi : 2.5 S| — P(i/mj/)
where pj, & ST, k> 1.

Then P is also a probability mass function satisfying the differential privacy constraint,

1.e.,
Pir, j1) < €Plia, jo), V]ir — ia| + |51 — jo| < A. (B.3)

Proof. Due to the way we define P, we have

Y Plig)= >, Pl.g)=1,

(i,j)€Z? (i.4)€z?

and thus P is a valid probability mass function defined over Z2.
Next we prove that P satisfies (B.3). To simplify notation, define py = P(0,0). Then we
only need to prove that for any ki, ko € N such that |k — ko] < A, we have

Dy < €D, -

Due to the symmetry property, without loss of generality, we can assume ki < ks.
The easiest case is k1 = 0. When k; = 0, we have ky < A and

P(0,0) < e P(i,j), Vil + [j] = ko (B.4)

The number of distinct pairs (4, j) satisfying |i| + |j| = k is 4k for £ > 1. Sum up all

inequalities in (B.4), and we get

4]@273(0,0) S e Z P(Zaj)

(4,3 EZ2:[i|+]j|=k2

D2 jyez il +lil=ky P (b:J)
< € 7’7.7 B .]I_ 2
<P(0,0) <e s
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Spo < € Pry-
For general 0 < k; < ko, let A’ £ ky — k1 < A. Define By, via
By = {(i,j) € Z*||i| + |j| = k},Vk € N.
Then the differential privacy constraint (B.2) implies that
Pir, 1) < €Plia, j2), V(i1 j1) € Bry, (i2, J2) € By, [in — ia| + 1 — jo| = A". (B.5)

The set of points in By, forms a rectangle, which has 4 corner points and 4(k — 1) interior
points on the edges. For each corner point in By,, which appears in the left side of (B.5),
there are (2A’ + 1) points in By, close to it with an ¢! distance of A’. And for each interior
point in By, , there are (A’ + 1) points in By, close to it with an ¢! distance of A’. Therefore,
there are in total 4(2A" + 1) + 4(k; — 1)(A’ + 1) distinct inequalities in (B.5).

If we can find certain nonnegative coefficients such that multiplying each inequality in

(B.5) by these nonnegative coefficients and summing them up gives us

L peziipyizn POT) _  Dwpeziyizen PET)
Ak = 4k ’

then (B.3) holds. Therefore, our goal is to find the “right” coefficients associated with each
inequality in (B.5). We formulate it as a matrix filling-in problem in which we need to choose
nonnegative coefficients for certain entries in a matrix such that the sum of each row is ’“k;lA/,
and the sum of each column is 1.

More precisely, label the 4k; points in By, by {I1, 5, I3, ..., Ly, }, where we label the
topmost point by 1 and sequentially label other points clockwise. Similarly, we label the
4ky points in By, by {O1,02,0s, ..., Oy, }, where we label the topmost point by 1 and
sequentially label other points clockwise.

Consider the following 4k; by 4k, matrix M, where each row corresponds to the point in
By, and each column corresponds to the point in By,, and the entry M;; in the ith row and
jth column is the coefficient corresponds to inequality involved with the points /; and O;. If

there is no inequality associated with the points I; and Oj;, then M;; = 0.
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In the case k; = 2 and A’ = 3, the zeros/nonzeros pattern of M has the following form:

SO O O O O O O 8
O O O O O O 8 8
O O O O O 8 8 8
O O O O O 8 &8 O
SO O O O O &8 O o
O O O O 8 8 O O
O O O K8 8 8 O O
O O O 8 8 O o o
O O O 8 O o o o
o O 8 8 O o o o
O 8 8 8 O o o O
O 8 8 O O o o ©
O 8 O O O o o o
8 8 ©O O o o o o
82 8 O O © © O 8
8 O O O O O O R

where z denotes an entry which can take any nonnegative coefficient.

For general k; and ko, the pattern of M is that the first, (k; + 1)th, (2k; + 1)th and
(3k1+1)th rows can have 2A’ 41 nonzero entries, and all other rows can have A’+ 1 nonzero
entries.

We want to show that

2o ezl =k P05 T) < eeZ(i/,jf)ezz:n/wlj’\:m P, 7')
4k, - 4ko ’

or equivalently,

1+ > P’ j) < e > P’ 5).

b gnerzir|+' =k (i 3 L[|+ | =ka

Therefore, our goal is to find nonnegative coefficients to substitute each x in the matrix
such that the sum of each column is 1 and the sum of each column is (1 + ﬁ—l/) We will give
explicit formulas on how to choose the coefficients.

The case k1 = 1 is trivial. Indeed, one can set all diagonal entries to be 1, and set all
other nonzero entries to be % Therefore, we can assume ky > 1.

Consider two different cases: ky < A’ and ky > A’ + 1.

We first consider the case ky < A’. Due to the periodic patterns in M, we only need to

consider rows from 1 to k; + 1. Set all entries to be zero except that we set

M11:M22:"':Mk1k1 :17
MQ,A’+2 = M3,A’+3 R Mk1+1,k1+A’+1 =1
A/
M 7€ ki + 1, A + 1)U [4ky — A + 1,4k

T 2k (A — oy + 1)
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A/

M, = ) € |k 1,A"+1]U 2k 1+ A"k 1+ 24/
k141, 2k1<A,_k1+1),ye[1+, +1JU 2k + 1+ A" Kk + 1+ 2A]
1_k(A/AIk 1)
Mi': 1 —ki1+

It is straightforward to verify that the above matrix M satisfies the properties that the

sum of each column is 1 and the sum of each row is (1 + f—ll) Therefore, we have
Py < Geka,VO < ]{?1 < ]{32,]{31 < ]{?2 — k’l < A.

Next we solve the case k; > A’ 4+ 1. Again due to the periodic patterns in M, we only
need to consider the nonzero entries in rows from 1 to k;+1. We use the following procedures

to construct M:
1. For the first row, set M;; = 1 and set all other 2A’ nonzero entries to be ﬁ

2. For the second row, My, is uniquely determined to be 1 — ﬁ Set the next A’ — 1

nonzero entries in the second row to be %, Le., My = k—ll for j € [3, A’ + 1]. The last
nonzero entry M aryo is uniquely determined to be
A 1 A—-1 3

(1+k:_1)_(1_2_k1)_

kq 2k

3. For the third row, the first nonzero entry Mss is uniquely determined to be 1— ﬁ - % =

1— % Set the next A’ — 1 nonzero entries to be k_117 ie., Ms; = k_11 for j € [4, A" +2].

The last nonzero entry Ms ar43 is uniquely determined to be

A/ 3 A —1 5
(1+k_1)_(1_2_k:1)_ =

kq 2k

4. In general, for the ith row (i € [2,k; — 1]), the first nonzero entry M;; is set to be

M;=1-— 251;3, and the next A’ — 1 nonzero entries are 1?117 and the last nonzero entry

_ 2i—1
M; iy nr = T

5. For (k; + 1)th row, by symmetry, we set My, 414,11 = 1 and set other 2A’ nonzero

entries to be =.
7

6. The nonzero entries in the k;th row are uniquely determined. Indeed, we have

2k — 3
2k,

Mkhkl - ]_ -
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1
2k’

1 .
M/ﬂ,krl—j = k_lvj € [27A, - 1]

Mkhkﬁ-A’ =1-

It is straightforward to verify that each entry in M is nonnegative and M satisfies the
properties that the sum of each column is 1 and the sum of each row is (1 + ﬁ—ll) Therefore,

we have
Dy, < eepkz,VO <k < kQ,kl > A+1= ko — k1 + 1.
Therefore, for all kq, ks € N such that |ky — k1| < A, we have

Py < €Dy -

This completes the proof of Lemma B.2.
O

Proof of Lemma B.1. First we prove that P; € SP, i.e., P; satisfies the differential privacy
constraint (3.6).

By the definition of f;(x), f;(x) is a nonnegative function, and

/ / [ 50, . day
g

=" a;(k)Vol(A;(k))

= P(Ai(k))
=P(R?) = 1.

So P; is a valid probability distribution.

Next we show that f;(x) satisfies the differential privacy constraint. For fixed 7, on the
T1 — T plane, we can use the lines o = z1 + %A and 9 = —x1 + %A for all k € Z to
divide each A;(k) into distinct squares with the same size (each A;(k) will be divided into
8k + 4 squares). By taking the average of the probability density function over each square,
we reduce the probability density function to a discrete probability mass function over Z?2

satisfying e-differential privacy constraint. Then apply Lemma B.2, and we have
ai(kl) < eeai(k‘g),‘v’kzl,kg € N with |k‘1 — k‘2| <7i.
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Given x,y € R? such that ||x — y||1 < A, let ki, ks be the integers such that
y

X € Az(kl),
Yy € Az(kg)

Then |ky — ko| <. Therefore,

filx) < e fily),

which implies that the probability distribution P; satisfies the differential privacy constraint
(3.6).
Therefore, for any integer i > 1, P; € SP.

Next we show that

lim V(P;) = V(P).

1——+00

To simplify notation, we use dx to denote dxidx, ... dz,.

Given ¢ > 0, since V(P) is finite, there exists 7" = mA > 1 for some m € N such that

// /{XERd||X1>T} (0P(dx) < 2.

For each A;(k) we have

// £GP // / I/l Py ()

< Pi(Ai(k))(k+ 1)

\)

IW&WW%D%

< 2P (A (k))kA

of [ ] e
Therefore,
/// P (dx) <2// / L(x)P(dx)
{XERdIHlezT*} {x€eRY|||x||1 >T*}

2—5
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L(x) is a bounded function when ||x||; < T, and thus by the definition of Riemann-Stieltjes

integral, we have

lim / / /{XEW||x||1<T*}£(x)7>i(dx) _ / / /{xeRdHXHKT*}E(X)P(CZX).

So there exists a sufficiently large integer ¢* such that for all ¢ > ¢*

‘//."/{xeRd|||x||1<T*}ﬁ(X)Pi(dX)_//'”/{xewnx1<T*}£(X>P(dx) =0

Hence, for all ¢ > ¢*

\V(P;) = V(P)|
/R L) - / L(x)P(dx)

Rd

-y L(x)Pi(dx) - / L(x)P(dx)

{xeR4|x[l1<T*} {xeRY||x[[1<T*}

4 / LX)Pi(dx) — / L(x)P(dx)|
{xeR4||x|[1>T*} {xeR4|||x||1>T*}

< ‘ / L(x)Pi(dx) — / L(x)P(dx)
{xeR||x[[1<T*} {xeR?|||x[, <T*}

+ / L(x)Pi(dx) + / L(x)P(dx)
{xeR||x|[1>T*} {xeR4|||x||; >T*}

§
§(5+5+§)

IN

5
5 0.
Therefore,

lim V(P,) = V(P).

1——400
O
Define SP;qym = {Pi|P € SP} for i > 1, i.e., SPigm is the set of probability distri-
butions satisfying differential privacy constraint (3.6) and having symmetric and piecewise

constant (over A;(k) Vk € N) probability density functions.

Due to Lemma B.1,
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Lemma B.3.

Vi=_ inf  V(P).

PEUfilspi,sym

Therefore, to characterize V*, we only need to study probability distributions with sym-

metric and piecewise constant probability density functions.

B.1.3 Step 2

Given P € Pyym, we call {a;(0), a;(1),a;(2), ...} the density sequence of P; € SP; ¢ym, where
a;(k) is defined in (B.1) Vk € N.

Next we show that indeed we only need to consider those probability distributions with
symmetric and piecewise constant probability density functions the density sequences of

which are monotonically decreasing.

Define
SPima = {P|P € SP;4ym, and the density sequence of P is monotonically decreasing}.

Then

Lemma B.4.

V* = inf  V(P).

,Peufilslpi,md

Proof. We first show that among SP;¢m, to minimize the cost we only need to consider
these probability distributions with density sequences {ag, a1, as, . . . } satisfying that ag > a;.
Indeed, given P, € SP;sym with density sequence {ag, ay,as, ...} such that ag < ay, there
exists Py, € SP; sym With density sequence {by, by, b, ...} such that by > by and

V(Py) < V(Pa).

Consider the probability distribution P, € SP; ¢ym With density sequence {bg, b1, b2, ...}
defined as

bo = (1 + 5)@0,
bk = (1 — 5')ak,Vk Z 1,
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where we choose § > 0 and 0 < §’ < 1 such that

bo = i, (B.6)
f b Vol(A;(k)) = f apVol(A;(k)) = 1. (B.7)

Equation (B.7) makes P, be a valid probability distribution. One can easily solve
(B.6) and (B.7), and write down the explicit expression for d,d’. The density sequence
{bo, b1,bs, ...} satisfies by > by (indeed, we have by = by), and it is easy to verify that it

satisfies the differential privacy constraint, i.e.,
bk1 < eeka,Vkl, ]{12 € N with |l€1 — kg’ < i.

Note that C(]|x]|1) is a monotonically increasing function of ||x||;, and compared to P,,
P, moves some probability of SP; ;q from the (higher cost) area {x|||bz| > 2} to the (lower

cost) area {x|[|bz|| < £}, and thus we have
V(Py) < V(Pa).

Therefore, among SP; sym, to minimize the cost we only need to consider these probability
distributions with density sequences {ay, as, as, ...} satisfying that ag > a.

Next we show that among SP; ¢y With density sequences {ay, as, as, . .. } satisfying ag >
a1, to minimize the cost we only need to consider these probability distributions with density
sequences also satisfying that a; > a».

Given P, € SP; sym With density sequence {aq, as, as, ... } such that ap > a; and a1 < ao,
there exists P, € SP; sym With density sequence {by, b2, bs, ...} such that by > b; and

by > bs.

If + < 2, we can construct P, by scaling up ag, a; and scale down ay for all k£ > 2. More

precisely, define P, with density sequence {bg, by, ba, ...} via

bk = (1 +5)6Lk,]€ < 17
bk = (1 - 5’)ak,k Z 2,

for some § > 0 and 0 < ¢’ < 1 such that
b2 == b17
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So we have by > by > by. It is easy to check that Py satisfies the differential privacy constraint,
and V(P,) < V(P,) using the fact that C(||x||;) is a monotonically decreasing function in
terms of ||x||;.

If ¢ > 3, then without loss of generality we can assume ay < ag. Indeed, if ay > ag, we
can scale up ag,a; and scale down a, for all & > 2 to make a; = ag, and this operation
will preserve the differential privacy constraint and decrease the cost. Note that in this
case we cannot use the same scaling operation to make as < ag, because it is possible that
after the scaling operation 3—2 > e for some 3 < k > i, which violates the differential privacy
constraint. Hence, we can assume ag > as > ay. Let ap be the largest value in {as, ..., a4}
If ‘Z—’;/ < ef, we can scale up a; and scale down as until a; = as or C;—’;’ = e°. It is easy to see
this scaling operation will preserve differential privacy and decrease the cost. If after this
scaling operation we have ay = ay, then we are done. Suppose a; is still bigger than as.
Then ay is the smallest element in {as,as, ..., as:;}. Therefore, we have maxo<y<; Z—Z = Z—g
Then we can scale up ag,a; and scale down aj for k& > 2 until a; = ao. This operation
will preserve the differential privacy constraint and decrease the cost. If we call the final
probability distribution we obtained P,, we have P, € SP;gm, and the density sequence
satisfying by > by > by (indeed, by = by), and V(Py) < V(P,).

By induction, we can show that among all probability distributions in SP; gym, to mini-
mize the cost we only need to consider probability distributions with monotonically decreas-
ing density sequence.

Suppose among SP; ¢y to minimize the cost we only need to consider probability distri-
bution with density sequence {ag, a1, as, ...} satisfying ag > a; > ay > -+ > a,. Then we
can show that among SP; ¢ym to minimize the cost we only need to consider probability dis-
tribution with density sequence {ag, a1, aq, ...} satisfying ag > a3 > ag > -+ > a, > apyq-

Indeed, given P, € SP;sym with density sequence {ag,ar,as, ...} satisfying ag > a3 >

as > --- > ay, we can construct P, € SP; oym With density sequence {bg, b1, bo, . . . } satistying

and
V(Py) < V(Py,).

If a,41 < a,, then we can choose P, = P,,.
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Suppose a,1 > a,. Without loss of generality, we can assume
py1 < ay, for k <n+2—1. (B.8)

If ayy1 > ani2y, then we can scale up {ag, aq,. .., a,} and scale down {a, 1, anyo, ...} until
an+1 = ag. It is easy to verify that this scaling operation will preserve the differential privacy
constraint and decrease the cost.

Let £* be the smallest integer such that ax+ < a,41. Note that by (B.8) we have n+3—i <

k* < n. Let a; be the biggest element in {a,42,dns, ..., @nt14:}. Due to the differential

aj

privacy constraint, we have < e°. Then we can scale up a+ and scale down a,,; until

an+41 —

Qs = Qpyq OT a:il = e This operation will preserve the differential privacy constraint
and decrease the cost. If after this scaling operation ay- is still bigger than a,;, then we
can scale up {ag,ai,...,a,} and scale down {a,;1, ans2,...} until ag+ = a,41. Due to the
fact that a,41 is the smallest element in {a,41, Gni2, ..., Gni14i}, this scaling operation will
preserve the differential privacy constraint and decrease the cost. Therefore, we will have
Apg1 < Qg

Repeat the above steps for each k € k* + 1, k* + 2,...,n such that a; < a,1. If we call
the final probability distribution we obtained P,, we have P, € SP;sm, and the density

sequence satisfying
bo > b1 > by > -+ = by,

and V(P,) < V(P,).
Hence, among SP; ¢ym to minimize the cost we only need to consider probability distri-
bution with density sequence {ag, ai, as, ...} satisfying ag > a; > as > -+ > a, > apq1.
Therefore, among all probability distributions in SP; sym, to minimize the cost we only
need to consider probability distributions with monotonically decreasing density sequence.
We conclude that

Vi=  inf  V(P).

PeuUX SP; md

This completes the proof of Lemma B.4. O]

B.1.4 Step 3

Next we show that among all symmetric and piecewise constant probability density functions,

we only need to consider those which are geometrically decaying.
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More precisely, given positive integer ¢,

SPipa = { P | P € SPima, and P has density sequence {ag, ai,...,apn, ..., }

satisfying e _ e, Vk € N}
Ak
then
Lemma B.5.
V* = inf V(P).

PEUX,SP; pa

Proof. Due to Lemma B.4, we only need to consider probability distributions with symmetric

and piecewise constant probability density functions which are monotonically decreasing.
We first show that given P, € SP;ma with density sequence {ag,a1,...,an,...,}, if

‘Z—‘; < €f, then we can construct a probability distributions P, € SP; ma With density sequence

{bo,b1,...,bpn,...,} such that Z—i_’:ee and

V(Py) < V(Pa).

Define a new sequence {bg, b1, ..., by, ...} by scaling up ag and scaling down {ay, as, ... }.

More precisely, define {bg,b1,...,b,,...} via

bo = CL0<1—|—(S),
bk = ak(l - (Y),V k > 1,

for some § > 0 and 0 < ¢ < 1 such that

f b Vol(A;(k)) = f a;Vol(A;(k)) = 1.

So {bg, b1, ...,by,, ...} is avalid probability density sequence. Let P, be the corresponding
probability distribution. It is easy to check that P, satisfies the differential privacy constraint,

ie.,

by

k+1i

< ¢,k > 0.

Hence, P, € SP;ma. Since C(||bz||1) is a monotonically increasing function of ||x|;, we have
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V(Py) < V(Pa).

Therefore, for given ¢ € N, we only need to consider P € SP; na with density sequence
{ap,a1,...,an, ...} satisfying u=¢"

Next, we argue that among all probability distributions P € SP;mg with density se-
quence {ag, a1, ...,qn, ..., } satisfying 92 = ¢, we only need to consider those probability
distributions with density sequence also satisfying ﬁ = e“.

Given P, € SP;ma with density sequence {ag,as,...,ay,,...} satisfying Z—? = ¢ and
a‘?—il < ef, we can construct a new probability distribution P, € SP; nqa With density sequence

{bo,b1,...,bn, ...} satisfying

b,
bi
by .
= € s
bt
and V(P,) > V(Py).
First, it is easy to see ay is strictly less than ag, since if ag = a1, then 2 = 20 > 90 — ¢€,

Qjt+1 aj+1 — a4
We can construct a new density sequence by increasing a; and decreasing a;,; to make aaﬁ
T

More precisely, we define a new sequence {by, by, ... b, ...} as

bk:ak,Vk#l,k#Z—i‘l,
b1 = a1(1 —I— 5),
biy1 = a;1(1—9"),

where § > 0 and ¢ > 0 are chosen such that % = ¢¢ and

It is easy to verify that {bg, b1, ..., by, ...} is a valid probability density sequence and the
corresponding probability distribution P, satisfies the differential privacy constraint (3.6).
Moreover, V(P,) < V(P,). Therefore, we only need to consider P € SP;,q with density

sequences {ag, @1, ..., ay, ...} satisfying % = e and a‘il = ef.
Use the same argument, we can show that we only need to consider P € SP;ma with
density sequences {ag, ay, ..., an,...} satisfying
a
b e Wk >0
Qi+k
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Therefore,

]

Due to Lemma B.5, we only need to consider probability distribution with a symmetric,
monotonically decreasing, and geometrically decaying piecewise constant probability density
function. Because of the properties of symmetry and periodic (geometric) decay, for this
class of probability distributions, the probability density function over R? is completely
determined by the probability density function over the set {x € R?|||x|; < A}.

Next, we study what the optimal probability density function should be over the set
{x € RY||x|; < A}. It turns out that the optimal probability density function over the set
{x € RY||x|l; < A} is a step function. We use the following three steps to prove this result.

B.1.5 Step 4

Lemma B.6. Consider a probability distribution P, € SP; pa (i > 2) with density sequence
{ag,a1,...,an,...}. Then there exists an integer k(i) and a probability distribution P, €

SP; pa with density sequence {by, by, ..., by, ...} such that

and
V(Py) < V(Pa).

Proof. For 0 < k <1 — 1, define

+oo
wy, = —Je // / C(x)dzydz, . .. dxg,
Z HAL|xh<(+5HA

and

Z e °Vol(A; (ji + k).
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Then the cost V(P,) = Zz;lo wgag, and the constraint on a; is that

agp 2> ay 2 -+ = -1,

ag < a;1€,
+oo
Zukak =1.
k=0

Therefore, to minimize V' (P) among all probability distributions P € SP; 4, we need to
solve the following linear programming problem

i—1
minimize E WA,
Q0,Q1 50,051

k=0

subject to ag >ay > --- > a;_q,

ap < a;j_1€°,

+00
E U — 1.
k=0

Let

w
A k
hk—

Uk

In the following we show that when d = 2, there exists an integer k(i) such that

ho > hy > -+ > hyg,

(B.9)
Py < by < - < hy, (B.10)
ho < hi—l- (B].l)
When d = 2,
hy = —
up,
_ AOE S N eI (L + 3(ji + k) + 3(ij + k)?
255 Y eI (1 +2(ji + k)
_ 2A3i%cy 4 (6ik + 3i)cr + (14 3k + 3k%)co
3 (1 + 2k)co + 2ic, ‘
Let g(k) == 3i202+(Gi(’“lf;lz;i:g;?kJrSkQ)CO. It is easy to compute the derivative of g(k) with
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respect to k:

 6cgk? + 6cgk + c + 12coc1ik 4 6cocyi — 6eacoi® + 12¢7i

g'(k) (1 + 2k)co + 2ic1)?

Note that the numerator of ¢’(k) is an increasing function of k, and

g (0) = & 4 6coeri — 6eacyi® + 12¢342

b(6i> — 6i +1) — 1
= 0
G—1p

for sufficiently large 7, and

62— 6i+1—b

10 > 0.

g'(i—1)

Therefore, h; first increases as k increases, and then decreases as k increases to i — 1.
Hence, there exists an integer k(i) such that (B.9) and (B.10) hold.

Next we compare h;_1 and hg:

W;—1 Wo
hi—i —ho = -
Ui—1 Uop

C2A (3i-2)(b—1)%(i—1)
T34 (i —b+1)(b+2i —1)

> 0.

Hence, (B.11) also holds.
Now we are ready to prove Lemma B.6.

Suppose ay)y < api)-1. We can scale up ax;) and scale down ag;)—1 to make apy) =
Wi (4) < W (3)—1
J —_ .
Uk (1) Uk (i)—1
cost V(P,). Now we have ay) = ap@)-1-

Ap(iy—1- Since hyy < hyey—1, ie. , this scaling operation will not increase the
Suppose ayiy = agi)—1 < Ar@i)—2- Then we can scale up ay;) and ag)—1, and scale down
Ap(iy—2 10 make ay;)y = apey—1 = Apey—2. Since ey < hig—1 < hi)—2, this scaling operation
will not increase the cost V(P,). Now we have ay;) = are)—1 = Qr)—2-
After k(i) steps of these scaling operations, we can make ag = a; = -+ = ay(;), and this

will not increase the cost V(P,).

Finally, if a‘_’fl < ef, we can scale up ag, ai, . .., ai), and scale down a;_; to make aa—fl =
ef. Since h;_y > hg > hy > .-+ > hy), this scaling operation will not increase the cost
V(P,).

Let P, be the probability distribution we obtained after the k(i) + 1 steps of scaling

127



operations. Then P, € SP; ,a, and its density sequence {bg, by, ..., by, ...} satisfies

bo =01 =by =+ = bi(y),

and
V(Py) < V(Pa).

This completes the proof of Lemma B.6.
[

Therefore, due to Lemma B.6, for sufficiently large i, we only need to consider probability

distributions P € SP; a4 with density sequence {ag, a1, ..., a,,...} satisfying

ap = ap :a2:-~-:ak(i), <B12)

=e". (B.13)

More precisely, define

SPitr ={ P € SP;pa | P has density sequence {ag,ay,...,an,...}
satisfying (B.12) and (B.13) }.

Then due to Lemma B.6,

Lemma B.7.

Vi=_inf  V(P).
PEUX,SP; s

Next, we argue that for each probability distribution P € SP;g (i > 3) with density

sequence {ag, ay, ..., an, ...}, we can assume that there exists an integer k(i)+1 < k < (i—2),
such that
a; = ao,VO S] < k, <B14)
a; = ai_l,Vk <] < 1. <B15)

More precisely,
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Lemma B.8. Consider a probability distribution P, € SP; s (i > 3) with density sequence
{ag,a1,...,an,...}. Then there exists a probability distribution P, € SP; s with density
sequence {by,b1,...,bn, ...} such that there exists an integer k(i) + 1 < k < (i — 2) with

bj =ap,V0<j <k, (B.16)
bj = ai_l,‘v’ k< j <1, (Bl?)

and
V(Py) < V(Pa). (B.18)

Proof. 1f there exists an integer k(i) + 1 < k < (i — 2) such that

aj:ao,VO§j<k‘,

aj:ai_l,Vk:<j<i,

then we can let P, = P,.
Otherwise, let ki be the smallest integer in {k(z) + 1, k(i) +2,...,7 — 1} such that

Afy 7é g,

and let ko be the biggest integer in {k(i) + 1,k(i) +2,...,7 — 1} such that

Qs # A1

It is easy to see that k; # ko. Then we can scale up ax, and scale down ay, simultaneously
until either ay, = ag or ay, = a;_;. Since hy, = Z—: is an increasing function of £ when k > k(i),
and k(i) < k1 < ko, this scaling operation will not increase the cost.

After this scaling operation we can update k; and ks, and either k; is increased by one
or ks is decreased by one.

Therefore, continue in this way, and finally we will obtain a probability distribution
Py, € SP; s with density sequence {bg, b, ...,by,...} such that (B.16), (B.17), and (B.18)
hold.

This completes the proof.
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Define

SPistep = { P € SPig | P has density sequence {ag, a1, ..., an,...}
satisfying (B.16) and (B.17) for some k(i) < k < (i —2) }.

Then due to Lemma B.8,

Lemma B.9.

Vi—  if V(P
PEURL SPi step

As ¢ — oo, the probability density function of P € SP; s will converge to a multiple

dimensional staircase function. Therefore, for d = 2 and the cost function £(x) = ||x||1,Vx €

R?, then
inf // P(dzidrs) = inf // xX)dz dzs.
PeSP R2 ~v€[0,1] R2

This completes the proof of Theorem 3.1.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1  Proof of Theorem 4.2

Proof of Theorem 4.2 . Consider a feasible solution to the optimization problem (4.8) with

primal variables

6 k=1+iAfor i=0,1,2,...,5 —1

Pk =
0 otherwise

The corresponding value of the objective function is

L1

Therefore,

Vip <26 ) L(1+iA), (C.1)

We claim that the above primal variables are the optimal solution. We prove this claim by
constructing the corresponding dual variables.
Associating dual variables p with the constraint in (4.9), yx with the constraint in (4.10),

we have the dual linear program:

Vip = max ,u—%z:yk

k=0
such that > 0,y, > 0,Vk € N, (C.2)
1
SH — Yo < 07 (CB)

2
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p— i ye < L(k),Vk > 1. (C4)

i=max(0,k—A+1)

The complementary slackness conditions require that

K=Y — U1 :£<1)7

1+kA 1
e > ye = LU+ kD) fork =1,2,..., o5 — 1,
i=2+(k—1)A
1
= > —_—— .
Yk 0,Vk‘_(25 1)A+2
Consider the following dual variables:
A
1
= >(—=—-1)A+2
1
e =LE+A)—LE+A-1)+ylk+A),V2<Ek< (%—1)A+1,
35
y1 =Y (L(1+iA) = L(iN)) >0,
i=1
A %
yo=p—L1)—y=L(1+—=)—L(1)— ) (L(A+iA)—L(:EA))>0.

It is easy to verify that these dual variables satisfy the constraints of the dual linear

program, and the value of the objective function is

+o0 %_1
P26 yp=p—20 Y (n—L(1+iA))
k=0 i=0
2 —1

26
=26 Y L(1+iA).

i=0
Therefore, by weak duality we have

25—1
Vip >26 )  L(1+iA),

=0
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Due to (C.1), we conclude

1
551

Vig =20 L(1+1iA).

1=0

C.2  Proof of Corollary 4.5

Proof of Corollary 4.5. First we compute the lower bound Vg via

-1
Vig =2 Z SL(1+iA)

=0
=—1
=20 ) (1+iA)
=0
-1
=20 ) (1+2iA+ A%

1=0

e ] 550 = 1) alas — D255 — 1)
_26(2—5+2AT+A : )
1 Az AZ A2
A U et T
AQ
= 0(1552)
The upper bound is
5, 5 A
VUB:Q;ZE(Z>+ZE(2_5)
L0 DsE D s A
A 6 A 462
_1<A2+1_3A)+A
6202 26 46
A2 +1
1262 6
AQ
26(1262)'
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Therefore, the multiplicative gap goes to one as § — 0, i.e.,

C.3  Proof of Corollary 4.7

Proof of Corollary 4.7. Using the fact that £(-) is a monotonically increasing function for
k > 0, we have

51 251
o . . o . A .
Vg —Vip =2 ; KE(Z) + ZE(Q_é) —20 ; L(1+1iA)

b A A
< — — — N —
< —20L(1) + R L(55) +20L(5 — 1)
A

< (2+ %)5,6(2—5).

Therefore,

Vus Vo — Vis
Vi T Vi

(2+ 3)0L(35)
265 £(1 4 iA)
N (24 %)0L(5)
T 20L(1+ (5 — DAY

<1+

and thus

. Vus 1
fm o s 1+ (4 5R)C
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C.4  Proof of Theorem 4.8

Proof of Theorem 4.8. Consider the feasible primal variables {py }ren defined as

ab! fork=1+iA0<i<n-—1

Py = (C.5)

0 otherwise

It is straightforward to verify that the above primal variables satisfy the constraints of the

relaxed linear program, and the corresponding value of the objective function is

n—1
2> "ab*L(1+kA).
k=0
We prove it is also the optimal value by constructing the optimal dual variables for the
corresponding dual linear program.
Associating dual variables y, o, y1, y; with the primal constraints in (4.19), (4.20), (4.21),

and (4.22), respectively, we have the dual linear program:

+o00
Vip:=min pu— (20 +¢€° —1) Zyk (C.6)
k=0
such that © >0,y >0 VkeN (C.7)
1 14e =1 =1
- _ ~ < .
2,u 5 Yo 5 U 5 gyk_o (C 8)
+o0
w—eyo— ey — (e —1) Zyk < L(1) (C.9)
k=2
k 400
p—e Y = (e =1 Yy < L(k)VE>2. (C.10)
l=max(0,k—A+1) I=k+1

If the primal variables defined in (C.5) are the optimal solution, the complementary

slackness conditions require that the corresponding dual variables satisfy that

+oo
p=LA0)+eWo+y)+ (=1 u
=2

1+A “+oo
p=LA+A) +e ) yt+(ef=1) Yy
1=2 1=24+A
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1+kA +o0

p=L(1l+kA)+e Z y+ (ec—1) Z y,V1<k<n-—1,
1=2+(k—1)A 1=2+kA

Consider the following dual variables defined via

p=L(1l+(n—-1)A),
ye = 0,Vk > 2+ (n — 2)A,
Yk :b<yk+A+£(k‘+A) —L(k+A—=1)),V2<k <1+ (n—2)A,

Zb (14 iA) — L(iA)),

Zb L1+ (i—1)A)).

We verify that the above dual variables satisfy the inequality (C.8) in the following

+oo

(L+eYyo+ (e =Dy + (=1 ye—p>0
2
+00

Syo—y1+e (o +y) + (=1 g —pn=0
k=2

)
Syo—1 —L(1) >0
n—1

&Y VRLEA) = L1+ (i—1)A) — L(1+1iA)) > L(1).

It is easy to verify that the dual variables satisfy the constraints (C.7), (C.8), (C.9), and
(C.10) in the dual linear program. Next we compute the corresponding value of the objective

function

+o00
— (20 + e — 1)Zyk
k=0

_(26+€e_1)(y0+y1+M_E(l)_ee<y0+yl))

e —1

== —— (= L(1) =y — )
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20 +ef —1

=L(1+ (n—-1)A) —

(L1+(n—1)A) — L(1)—

ni: V(L(14iA) — L(1+ (i —1)A)))

n—1

=2 " ab"L(1+ kA),

k=0

which is also the value of the objective function in the primal problem achieved by the primal
variables defined in (C.5). Therefore, we conclude that

n—1

Vi =2 ab"L(1+EkA).

k=0

C.5 Proof of Corollary 4.12

Proof of Corollary 4.12. For the cost function £(k) = |k,

n—1
Vis =2 ab"L(1+kA)
k=0
n—1
=2 ab*(1+kA)
k=0
n—1
= 1+2aA) Wok
k=0
b—b*  (n—1)b"
—1—i-2aA((1_b)2 T ).

) ) ) ) yuniform
Given 6 > 0, Vg is a decreasing function of €. Therefore, to lower bound —H—— in

the regime € < 9, we only need to consider the case ¢ = §. Thus, in the following we set
€=29.

: —1
Since Y, _, ab” = 3, we have

- 1
“TTp T2
1—b
=1 — .
< 2a
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As —0, Lt = 1= — 1 and thus

7 2a 26+?
1 2
limdp"=1—- - = -,
0—0 3 3
log(2
€
Note that a = ©(20) as § — 0.
Therefore, as 6 — 0,
2 log(3)2
Vip ~ 2A 3 __ ¢ 3
LB a 5 p )
3.1 %log(%)
800G e )
A 3
= =(1-2log =
~ 0 19A
~ . 5 .
Recall V;upiform _ 2.
Therefore,
Vi 1
lim 72 = — ~1.32,
e=0—0 VLB 4(1 — 210g 5)
and thus
1
lim U ~ 1.32.

<
e<6—0 Vg — 4(1 — 210g %)

C.6  Proof of Corollary 4.13

Proof of Corollary 4.13. Using the same argument in the proof of Corollary 4.12, we can set
€=20.
For the cost function £(k) = k?,

n—1
Vis =2 ab"L(1+kA)

k=0
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n—1

=2 ab*(1+kA)?
k=0

n—1 n—1
=1+ 4aA Z bk + 2aA? Z bF k2
k=0 k=0

n—1
~ 204 bR
k=0
e b(1—b""Y)  (n=1)b" b2(1-b""2) v
eE 1 - b
1-2 2 1og(2) (log(2))2
opn3 20 ) s
2 €
3A2 2 4 3 3
~ 22 (2 Zoe(2) = S(log(2))2
S A N )
2
3
= S-(2 - 41og(5) - 2(log(5))’)
AQ
~ 202
A2
~ 2007
it A
Recall VigHorm = 2.
Therefore,
yuniform 1 5
lim v = 3 3 ~ S,
=i-0  Vip 12(2 — 4log(3) — 2(log())2) 3
and thus
Vuniform 1 5
lim ~UB < - - ~—.
<550 Vip 12(2 — 4log(3) — 2(log(2))2) 3

C.7  Proof of Corollary 4.14

Proof of Corollary 4.14. For the cost function £(k) = |k,

n—1

Vis =2 ab"L(1+kA)

k=0
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n—1

=2 ab*(1+kA)
k=0

n—1
— 14 QaAZb’“k
k=0

b—b"  (n—1)b"

=1+ 2adA — .
F2Aa T T s )
VLap
Given € > 0, Vg is a decreasing function of §. Therefore, to lower bound ’{/LBB in the

regime 0 < €, we only need to consider the case § = e. Thus, in the following we set = e.

Following the same calculations in the proof of Corollary 4.12, we have

A 3
Vig ~ g(l — 2log 5)
A
A
=0.19—.
€
On the other hand, we have
+oo
Lap 1—=X
Vv =2 —\k
UB ; 1 4 )\
B 2”&
C1-—e2
_A
as € — 0.
Therefore,
Lap
V 1
lim 25— = 5 ~ 5.29,
e=6—0 Vip 1 —2log 5
and thus
Lap
lim YU < ! -~ 5.29.
e<6—0 Vip 1-2 log )
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C.8 Proof of Corollary 4.15

Proof of Corollary 4.15. Using the same argument in the proof of Corollary 4.14, we can set
€=29.
For the cost function £(k) = k?, following the same calculations in the proof of Corollary

4.13, we have

A? 3 3

Vip = — (2 - 4log(5) — 2(log(5))?)
€ 2 2
A2

~ 20e

On the other hand, we have

- 14+
2
B
AQ
~ 26—2,
as ¢ — 0.
Therefore,
I VorP 2 40
im = ~
=0 Vig  (2—4log(3) —2(log(3))?)
and thus
Lap
V. 2
lim 25— < ~ 40.

=50 Vip = (2— 4log(3) — 2(l0g(D)?)

C.9 Proof of Theorem 4.16

Proof of Theorem /.16. Consider the dual program of the linear program (4.27),

VLB — Imax /L—5<Zyz(11)+zyz(22)++zyl(j)>

i1EL i9€ZL iq €7
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such that y(l) (2)...,ygdd)ZO,ViIEZ,iQEZ,...,idEZ

i1 7yi2 ’

= > == T Y <kl Rl o Rl Y, R) € 2
ilé[kl—A-‘rl,le] idE[de—A—f—l,kd]

Consider a candidate solution with

_dA
=95
and for all m € {1,2,...,d},
(;,L .
d 1= 0
(m) max (5 — kA, 0) i=kA, forkeZ,k>1
Yy, = .

max(4 — (|k| = 1)A = 1,0) i=EkA, fork € Z,k < -1
\O otherwise

It is easy to verify that this candidate solution satisfies the constraints, and the corre-

sponding value of the objective function is

u—é(Zyﬁf)+zy§f)+"-+zy§f)>

i1€Z i2€Z ia€L
(1)
=p —od Z Yi,
11EZL
K KLo_q
dA [,L dA M
= — dd (E—zA)—i— Z(E_ZA_D
i=0 =0
BB 1) (B4 A —2)
— i — 54 [ 4lda d dA
. ( SR 2

d?A dA
§ 1t
=u—0(or+hn—%)
_dA B A—-1
S48 2
Therefore, we have
dA A -1
>_—_ = 4
Vir 2 75 5«
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C.10 Proof of Theorem 4.17

Proof of Theorem 4.17. Consider the dual program of the linear program (4.27),

V1B := max M—d(Zy§f)+zy§§)+“'+z?/§j))

1EZ 12E€Z 1qE€EL

such that yg),yg), e ,ygl) >0,Vi,€lyis €L,... 00 €L
1 d
= >yl == T Y <P ko Rl Y, ka) € 2

’ile[kl—A-f—l,k‘ﬂ ’idE[k’d—A-i-l,kd]

To avoid integer-rounding issues, assume that % is an integer. Consider a candidate

solution with

_dA?
H= a5
and for all m € {1,2,...,d},
i=0
(m) —k2A2 Z:/{A, for 1 S kz %

2 ’
—((Jk| = 1)A+1)° i=kA, for — 5 <k< -1

SO alr alr alx

otherwise

Ve

It is easy to verify that this candidate solution satisfies the constraints, and the corre-

sponding value of the objective function is

M—5(nyf“rzyff“r”-Jrnyf))

€L irel =
= p—ody y
1EZ
35 351
_ Ko 9 a2 H . 2
= p—od ;(E—ZA)—F;(E—(ZA-FD)
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e (RN R ) [C R NS W S
-0 6d((26+1)d A 6 20d 26
1 1/1

- 2(25 1)%(3_1)_ ii_

A 6 A25(25 D
_ 1 po NG+l 1 1.1
- “—M((g“)a—f—z—a‘%—a(?f”
o dA? (1_1)dA2 1-A dA?
1282 YA 46 2 6

C.11 Proof of Theorem 4.25

dAlog %

Proof of Theorem 4.25. Consider a candidate solution with u = 3 (assuming k £ 4% is

an integer), and for all m € {1,2,...,d},

0 i < —kA
g™ =3 eylm 41 i€ [~kA+1,0].

max(e?y™\ —1,0) >0

It is easy to verify that the above candidate solution satisfies the constraints of the dual

linear program. We can derive the analytical expression for y;", which is

0 1 < —kA

(m) _ e(k—3)B_q

Y= ie[-(+1)A+1,—jAlforj €[0,k—1].
max(e/P =2 + 1 0) i€ [(j—1)A+1,jA]

D . . . A . .
To avoid integer-rounding issues, assume that n = %log ﬁ = 1052 is an integer. Then

the value of the objective function with this candidate solution is

p—> (Zy§f)+zy§f)+---+zy§f))

11EZ 12E€Z iq€EZ
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= —Bd Yyt

11EZL
256 1
K- BdA<Z 6—1+Z eﬂ—l eﬂ—1)>
o - ﬂ eP(1 — ) n
—# ﬂdA( 65—1 1—ef +65—1)
dAlog 3 - ,8% — —1 f(1-2) log 2
= _ gdA [ == 2
g p ( +65—1 1—ef +5(65—1)
:dAlog%_ log 2 B e’ N log 2
g 2( 5—1 plef —1) 2(ef—1)2  pef —1)
dA 1
- log 2 — = +1 L log2
@(5(og2 2—|—0g2—|—2 og ))
9 dA
_loe 2@ (22
8 (6)
dA
~0 (0117822 ) |
(01m)

as 8 2 max(e,6) — 0

Therefore,

% 9
lim —£B > 1ogg ~ 0.1178.

max(€,6)—0 %
O
C.12  Proof of Theorem 4.26
Proof of Theorem 4.26. Let a = % Consider a candidate solution with p = ‘Wﬁl—gg% (as-
suming k = % IO%O‘ is an integer), and for all m € {1,2,...,d},
0 i < —kA
™ = L By 4 20i| + 1 i€ [—kA+1,0].

max(e®y™) — (2i +1),0) >0

It is easy to verify that the above candidate solution satisfies the constraints of the dual

linear program.
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Define

2
21 = —F—
1 65—1’
2¢P A
Z_l_eg—l
2 65_17
B 2
23_1—6'8’
2¢PA
2_1_16_65
4 1—ef -

We can derive the analytical expression for ", which is

o _ )0 i < —kA

eFHIP (2 (KA +5) + 22) = 21 (KA +7) — 20 i = —(KA+ )
where k' € [0,k —1],j € [0, A — 1], and for i = (m — 1)A + j, where j € [1,A],m > 1,
(m) _ ,
y; = max(am,;,0),

where

am,j éemﬂ (Zl<]€A + A — j) + Zg) — ZI(A —j> — 29 — Z3(A —]> + 24)
— 24— 2z3((m — 1)A + 7).

For each j € [1, A], and we are interested in finding the number m(j) such that a,,;); = 0.

As 3 — 0, from a,,;),; = 0, we get

. 2 2A 2A 2 1
e (J)Bekﬂ(ﬁkA — ﬁ) =~ Bm(])A + o(ﬁ).
Therefore,
m(j) =52+ o(3).

where v is the solution to
va(loga — 1) = —(1 + log 7).

When a = %, we have v ~ 1.7468.
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Therefore, the value of the objective function is

u—ﬁ(Zy +Zy(2) -+ny§”>

i1E€EZ i9€Z i4EZ
= —Bd Yyt
1EZ
k—1 A-1
=p—pd Zzy (K At5) +Zzy(m 1)A+j
=0 j=0 7j=1 m=1
dAzlog a
= BQ
1—e kP AA -1 k(k—1 A(A -1
6d <1—6_66k'8((21k'A -+ ZQ)A -+ Zl¥> — ZlAQ% — Zlk}% — ZQ]CA)
— €

B eB(] — emi)B
Y (T b+ A= ) 4 2) — (A )

— 29— 23(A = j) + z4) — zam(j) — z3A m(J )(mQ(j) +1) + 23(A — 5)m)
dAQ
Bz

— 2logy —log*~) +0(612)

——(log®a — (o — 1)(2loga — 2) +log” a — 2log v + (1 — 7y)a(2log a — 2)

_dA? 1
7 (2 log® a — 2 — 2aylog a + 2ay — 2log v — log? 7) + O(E)
dA? 1
~0. 0177? + 0(52)
as = max(e,§) — 0
Therefore,
!/
lim Zﬁ? > 0.0177.
max(e,8)—0 5
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